mozilla

Mozilla Nederland LogoDe Nederlandse
Mozilla-gemeenschap

The Mozilla Blog: Today’s net neutrality vote – an unsurprising, unfortunate disappointment

Mozilla planet - to, 14/12/2017 - 19:14

We are incredibly disappointed that the FCC voted this morning – along partisan lines – to remove protections for the open internet. This is the result of broken processes, broken politics, and broken policies. As we have said over and over, we’ll keep fighting for the open internet, and hope that politicians decide to protect their constituents rather than increase the power of ISPs.

This fight isn’t over. With our allies and our users, we will turn to Congress and the courts to fix the broken policies.

The partisan divide only exists in Washington.  The internet is a global, public resource and if closed off — with only some content and services available unless you pay more to your ISP — the value of that resource declines. According to polls from earlier this year, American internet users agree. Three-quarters of the public support net neutrality. This isn’t a partisan issue.

We’ll keep fighting. We’re encouraged by net neutrality victories in India and elsewhere.  Americans deserve and need better than this.

The post Today’s net neutrality vote – an unsurprising, unfortunate disappointment appeared first on The Mozilla Blog.

Categorieën: Mozilla-nl planet

The Firefox Frontier: A new Firefox and a new Firefox icon

Mozilla planet - to, 14/12/2017 - 17:21

Firefox Quantum is all about being fast, responsive and modern. All the work we did in making this browser fast under the hood, we also put into making it look … Read more

The post A new Firefox and a new Firefox icon appeared first on The Firefox Frontier.

Categorieën: Mozilla-nl planet

The Firefox Frontier: 5 Things That Make Firefox Focus Great at Saving Mobile Data

Mozilla planet - to, 14/12/2017 - 06:12

Here’s a new view on 2018: start the year with more Focus—focus in your online life, on what you’re doing, and away from the distractions. At least that’s going to … Read more

The post 5 Things That Make Firefox Focus Great at Saving Mobile Data appeared first on The Firefox Frontier.

Categorieën: Mozilla-nl planet

The Mozilla Blog: Firefox Focus Adds Quick Access Without Sacrificing Users’ Privacy

Mozilla planet - to, 14/12/2017 - 06:00

It’s been a little over a year since we launched Firefox Focus. We’ve had tremendous success since then, we launched in 27+ languages, launched on Android, and hit over 1 million downloads on Android within the first month of launch.

Today, we’re introducing a new feature: quicker access to your most visited sites, as well as the ability to add any search engine to your Focus app. They were the most requested items from our users and are aligned with our goals on what makes Focus so great.

We know our users want choice and miss the convenience of having their favorite websites and search engines at their fingertips, but they don’t want to sacrifice their privacy. Since the moment we’ve built Focus, our goal has been to get our users quickly to the information and sites all while keeping their data safe from unwanted targeting.

We all have our popular go-to sites that we visit regularly — whether it’s checking the latest news on your favorite news site or checking the scores of your beloved sports team. Now, you can add the sites you visit frequently to your personal autocomplete list within the app. This means that only you can see the sites’ URL in this list. So, when you’re ready to check your favorite sports team’s scores, you simply type in a couple letters and autocomplete will finish the job.

Autocomplete on Android (Left) and iOS (Right)

 

Check it out here:

There’s also something new for users where they can add search engines from any site that has a search field. If you want to search from somewhere outside our list of suggested search engines, go ahead and add it! For example, if you want to see a movie this weekend but don’t want to waste hours on a bad movie, you can check rottentomatoes.com. We know that choice is important to our power users so this new function allows them to set up their preferred way for searching the web.

One of the reasons users love Focus is because of the faster load times due to our auto-blocking of ads and trackers. It quickly gets you to the places where you want to go and sets us apart from other browsers. We built Focus as the quickest and easiest privacy browser built with you in mind.

The latest version of Firefox Focus can be downloaded on Google Play and in the App Store.

The post Firefox Focus Adds Quick Access Without Sacrificing Users’ Privacy appeared first on The Mozilla Blog.

Categorieën: Mozilla-nl planet

Mozilla Reps Community: New Council Members – Autumn 2017

Mozilla planet - wo, 13/12/2017 - 23:34

We are very happy to announce our 2 new council members Prathamesh Chavan and Mayur Patil are fully onboarded and already working moving the Mozilla Reps program forward.

Of course we would like to thank a lot the 2 outcoming members: Michael Kohler and Alex Lakatos.

Michael and Alex: you have worked extremely hard to move the program forward and your input and strategic thinking have inspired the rest of the Reps.

Prathamesh and Mayur: a warm welcome. We we are very excited to have you and can’t wait to build the program together.

The Mozilla Reps Council is the governing body of the Mozilla Reps Program. It provides the general vision of the program and oversees day-to-day operations globally. Currently, 7 volunteers and 2 paid staff sit on the council. Find out more on the Reps wiki.

Don’t forget to congratulate the new Council members on the Discourse topic!

 

Categorieën: Mozilla-nl planet

Hacks.Mozilla.Org: Actual Input Latency: cross-browser measurement and the Hasal testing framework

Mozilla planet - wo, 13/12/2017 - 16:07

Editor’s Note: This post is also featured on the 2017 Performance Calendar.

This is a story about an engineering team at Mozilla, based in Taipei, that was tasked with measuring performance and solving some specific performance bottlenecks in Firefox. It is also a story about user-reported performance issues that were turned into actionable insights. It is the story of how we developed Hasal, a framework for testing web performance between different browsers. Hasal takes a new approach to testing that considers user perception in the process.

Back in 2016, Firefox performance was problematic. We had many issues to address. One of the critical issues had to do with user reports about performance problems of Firefox on office web applications — regarding slow page-loads as well as sluggish response times.

Taking these seriously, but also experiencing many of these issues during our daily work, identifying the root cause for these performance issues was a top priority for us. Unfortunately, user sentiments is very often unspecific which makes identifying specific problems and evaluating their impact hard. So, we decided to take a new approach.

We were trying to implement a framework without using WebDriver, which relies on specialized browser APIs and JavaScript injection to manipulate the browser. Instead we used Sikuli, which submits native-like I/O signals to the computer to simulate user action. We built a framework that lets you define precise user interactions on a web application and measure input latency time using image recognition and real-time measurement instead of DOM events.

After working hard for about a year, we successfully implemented Hasal to compare the Actual Input Latency between different browsers on various web applications.

What is Actual Input Latency?

Based on Google’s “Measurement Performance with the RAIL Mode”, actual input latency is one of the key metrics that extends measurements of web performance beyond page load and focuses on responsiveness and in-app navigation.

In typical web applications, browsers spend most of their time on waiting for network resources to be downloaded and running JavaScript. The goal of the Hasal implementation was to focus on the latter, meaning that we measure the time elapsed between an I/O event and the web application’s first response as perceived by a user. Therefore, we measure only the time from user input to the screen’s initial change. We define this measure of time as the actual input latency.

 

Implementation Concepts Basic concept

Our goal was to implement a tool built from the perspective of user perception. We designed our workflow so that each and every simulated user step would be based on image recognition, and every numeric measurement would be based on visual analysis.

Basic flow

 

Our framework is based on the PyUnit framework in combination with Sikuli. You can see our workflow in the figure above. First, we have some prerequisite tasks in the setup() function. Next, it executes the simulated user steps in the run() function of a designated test. Last, we get the final output from teardown() function.

Each simulated user interaction is screen-captured for analysis. Hasal relies on video recording and image extraction to get the desired results. The details of how we do this will be explained in the next few paragraphs.

Run details

When entering the run() function, we send a simulated I/O event to specific icons, images, or areas of the screen through the JVM (Java Virtual Machine). This way, we simulate how people interact with the web application. Also, we send the event log to the terminal at the same time via JVM. This is considered a marker to identify when the I/O event triggered.

Video analysis

In the teardown() function, Hasal finishes desktop video recording and starts to analyze the video. The basic idea of getting the measured time is to calculate the actual frames played during two key frames. The first key frame is marked when the indication shows up in terminal, and we assume that there is a very little time delay between indication shown in terminal and submission of I/O event. The second key frame is the first screen change in a certain area of the browser. In other words, the second key frame is the indicator of web application’s response in the first place.

By calculating the actual frame number between the first key frame and second key frame, we can get the real response time of web application’s response to user action. For example, if we were recording in 90fps (frames per second), and we have 10 frames between 2 key frames as shown above, we will get an Actual Input Latency of 111.11 ms.

An Example of Actual Input Latency

To better illustrate the idea of how to get from a defined user interaction on a web application to Actual Input Latency measurements with Hasal, here is a small example from one of our test cases from our “social” category (as described in a previous post about performance testing).

In one testing scenario that looks at latency for opening an online chat, we measure the Actual Input Latency from the initial click to when the chat screen shows up. Here are the testing steps. These steps are the ones that are translated into the linked script:

The user wants to open a chat window on Facebook. Therefore, they select a friend from their list and click on the respective friend to launch the window and wait for it to load.

Setup
  • Open the browser and enter the URL in URL bar
  • Login to Facebook and wait for the page to be fully loaded
  • Make sure the friend list is not hidden
Run
  • Move mouse cursor to one of the avatars in the friend list
  • Take snapshot (Snapshot 1)
  • Send the MouseDown Event
  • Send the MouseUp Event and simultaneously send the Message to the Terminal Console and take snapshot (Snapshot 2)
  • Wait for the chat window to be launched
Teardown
  • Close the chat screen
  • Close the browser

The result of input latency will based on the Snapshot 1, 2 and the frames converted from video to come out the actual frames played.

More details on how each web application was tested can be found in the repository.

Current Results -Performance improvements in Firefox Quantum

This framework was initially targeted to find the performance differences between Firefox and other browsers in specific web applications. After we finished examining targeted applications, we started to help finding performance gaps in other major web applications.

Comparing response times for targeted web apps in Firefox<figcaption>The test result is based on the snapshot of web app.</figcaption>

We have dedicated the Hasal framework to measure and improve Firefox Quantum performance. Over time, we have seen great improvements on Actual Input Latency for different web applications. In the above figures, we can see that Firefox Quantum’s response time has improved by up to 6x. Based on Hasal results, we have filed more than 200 bugs of which more than 80% were fixed for our Firefox Quantum release.

Other findings

From time to time, we’ve seen some performance regressions in our tests without any real changes to our browser. After confirming with the respective third-party web service providers, we found out that we have been able to detect performance regressions on their side through our testing.

Limitations of the Hasal framework

The work on Hasal has been a constant iterative approach of implementation and testing. During the whole time of its development, we worked closely with other engineering teams at Mozilla to make Hasal as useful as possible. However, some limitations still exist which are important to keep in mind:

Measured time is limited by FPS

Since our measurement is based on captured frames, any action within one frame can’t be measured by this framework. In our laboratory environment where we record with 90fps, this threshold is at 11.11ms and any response faster than 11.11ms cannot be detected.

Overhead can vary in different browsers

Since the framework heavily relies on capturing desktop video, there is potential overhead introduced. We have tried to choose a recorder with little overhead that records from hardware directly. However, this approach could introduce different overhead in the different browsers due to different implementations for leveraging graphics card computation power.

JVM versioning can also affect the measured time

As the Hasal approach also relies heavily on the assumption that sending an indicator to the terminal should only have a very short delay compared to sending I/O events to the browser, we have done a lot of profiling to ensure that this assumption is correct. According to our profiling results, we are almost certain. However, we still found that different JVM version could break our assumption in certain environments. Sometimes, a newer JVM version can increase the time delay between sending the indicator to the terminal and sending the I/O events. We actually found that upgrading Java introduced a delay of 20ms.

Onward

While the current Hasal implementation has proven useful to guide engineering work on fixing critical performance issues, there are some open issues that we will need to target next to make Hasal useful as a general framework for testing performance.

Portability

This framework is a combination of many tools. So, it requires a time-consuming installation script to deploy the framework. That also raises the barrier to use, due to the difficulty of installing and reproducing our test results in other environments. Therefore, trying to make it simple and easier to install in others’ environment will be our next step in the future.

Mobile

The overall concept of our framework should apply in mobile devices as well. However, we might need to change few things before we can proceed. First of all, the video recorder might need to be replaced by snapshot or screen capture software to minimize the CPU power consumption and improve the efficiency. Also, the host connected to the mobile device should be responsible for calculating the results.

Reducing overhead

We already talked about the issue of potentially introducing non-negligibleoverhead in some scenarios by relying on a software desktop video recorder. So, we’ve also considered having an alternative solution to record the whole desktop screen. For example, an external HDMI recorder or external high-speed camera would be a potential choice for us to further investigate.

Profiling

When you find a scenario with a significant performance issue, typically you file a bug for it. However, a bug does not provide the detailed information during testing such as detailed profiler data needed to take the next action. That’s missing in our current framework. It’s not easy to figure out a way to combine the actual visual representation with the code stack. But we are trying to integrate them via indicators and markers in profiles. This could help us understand two different things in the same timeline and let engineers understand more about the situation.

Let us know what you think. Thanks!

Bobby Chien, Fu-Hung Yen, Mike Lien, Shako Ho, and Walter Chen of the Hasal team<figcaption>Bobby Chien, Fu-Hung Yen, Mike Lien, Shako Ho, and Walter Chen of the Hasal team .</figcaption>
Categorieën: Mozilla-nl planet

Firefox Test Pilot: Notes sync feature is now available with end-to-end encryption

Mozilla planet - ti, 12/12/2017 - 20:23

We are happy to announce that the Notes sync feature is now being rolled out with the latest update of the add-on. Notes sync allows you to access your notepad from different computers and backup Notes onto Mozilla’s servers. Start using the sync feature by pressing the sync button at the bottom the Notes toolbar:

<figcaption>Notes sync powered by Firefox Accounts & Kinto</figcaption>

This feature is powered by Firefox Accounts for authentication and Kinto for notes storage. Your notes are end-to-end encrypted using a key derived from your Firefox Accounts password. The sync encryption feature is based on the Firefox Sync encryption model. For example, this note string “I can sync now!” is locally encrypted with A256GCM content encryption and sent to the Kinto server instance:

Keep in mind that if you reset your Firefox Accounts password then you will not be able to decrypt your Notes data that was stored on the server. The data that was encrypted with your old password will be overwritten by your local Notes content.

Don’t forget to provide feedback using the “Give Feedback” button in Notes and report any bugs you find in the Notes issue tracker.

Notes sync feature is now available with end-to-end encryption was originally published in Firefox Test Pilot on Medium, where people are continuing the conversation by highlighting and responding to this story.

Categorieën: Mozilla-nl planet

Air Mozilla: All Hands MoFo Plenary Session

Mozilla planet - ti, 12/12/2017 - 19:30

All Hands MoFo Plenary Session All Hands MoCo Plenary Session

Categorieën: Mozilla-nl planet

Air Mozilla: All Hands MoFo Plenary Session

Mozilla planet - ti, 12/12/2017 - 19:30

All Hands MoFo Plenary Session All Hands MoCo Plenary Session

Categorieën: Mozilla-nl planet

The Mozilla Blog: Mozilla Joins Net Neutrality Blackout for ‘Break the Internet’ Day

Mozilla planet - ti, 12/12/2017 - 18:25

Today, Mozilla.org is blacked out to support net neutrality.

We’re joining with others across the web — from Github and Reddit to Etsy and Imgur — for a Break the Internet Day of Action. The idea: to show how broadly we all value an open internet. And to ask Americans to call their members of Congress and urge them to stop the FCC’s plan to end net neutrality.

In two days, the FCC will vote on a order that would gut current net neutrality protections, allowing internet service providers (ISPs) to create fast lanes and slow lanes online. ISPs like Verizon and AT&T would be able to block, throttle, and prioritize internet access for all Americans.

Says Ashley Boyd, Mozilla’s VP of Advocacy: “Right now, ISPs can’t discriminate between the different websites where Americans shop, socialize, and read the news. But without net neutrality, Americans’ favorite online services, marketplaces, or news websites could load far slower — or not at all.”

Says Denelle Dixon, Mozilla’s Chief Business and Legal Officer: “Net neutrality is about free speech, competition, and innovation. If the FCC votes to roll back net neutrality, the decision would harm every day internet users and small businesses — and end the internet as we know it.”

Net neutrality is something we can all agree on: our recent public opinion poll shows overwhelming support — across party lines — for net neutrality, with over three quarters of Americans (76%) supporting net neutrality.

Mozilla is a nonprofit committed to net neutrality and a healthy internet for all. If you are seeking additional ways to help, a donation to Mozilla allows us to continue our work.

The post Mozilla Joins Net Neutrality Blackout for ‘Break the Internet’ Day appeared first on The Mozilla Blog.

Categorieën: Mozilla-nl planet

The Firefox Frontier: See it, understand it, click it: The new Firefox is organized better

Mozilla planet - ti, 12/12/2017 - 15:17

We’ve released an all-new Firefox to the world, and it includes a lot of new browser technology that’s super fast. We’ve made many of these changes over the past year … Read more

The post See it, understand it, click it: The new Firefox is organized better appeared first on The Firefox Frontier.

Categorieën: Mozilla-nl planet

The Mozilla Blog: Early Returns on Firefox Quantum Point to Growth

Mozilla planet - ti, 12/12/2017 - 15:02

When we set out to launch Firefox Quantum earlier this year, we knew we had a hugely improved product. It not only felt faster — with a look and feel that tested off the charts — it was measurably faster. Thanks to multiple changes under the hood, we doubled Firefox’s speed while using 30% less memory than Chrome.

In less than a month, Firefox Quantum has already been installed by over 170M people around the world. We’re just getting started and early returns are super encouraging.

Here’s a look at the top initial indicators we are seeing for Firefox Quantum since our launch:

  1. Our biggest release to date. Firefox Quantum is Firefox’s fastest path to 100M+ profiles and half a billion daily hours of use on a new release in recent memory – a product of both seamless release and strong uptick in new profiles. And, millions of users are still getting their first introduction to Firefox Quantum every day.
  2. More users are coming from Chrome. We’ve seen a 44% growth in downloads from people who are using the Chrome browser compared to the same time last year.
  3. Mobile is growing too. Our four core mobile apps are experiencing strong growth resulting from the launch of Firefox Quantum. Firefox for iOS and Android has shown a 24% lift in installs, and Firefox Focus for Android and iOS showed a 48% lift in installs.
  4. The Add-ons ecosystem remains strong. Over 1,000 Firefox Quantum-ready extensions have been added to addons.mozilla.org since Firefox Quantum was released.
  5. Screenshots is a breakout hit. It’s seeing very strong early traction. Users have taken over 30 million screenshots since the feature launched in late September.                                                                                           
  6. Developer Support for Firefox Quantum:  Improved browser speed and stability, as well as high quality developer tools are giving developers more reasons to try and continue to use Firefox developer tools. Since the September 26th developer edition of Firefox Quantum was released, we saw a 10% increase in daily use of developer tools and a 53% increase in Developer edition downloads.
Here’s what the world is saying about Firefox Quantum:

7.  Social media Is buzzing. While the fun part was reading what new users had to say, the data also showed a significant positive shift in sentiment across Facebook, Twitter, Reddit, Tumblr, YouTube, and blogs. (Source: Crimson Hexagon social media analytics)

8.  Our Ads are taking off. We took a unique approach to marketing the new Firefox browser, where we focused on what it feels like — and even sounds like — to use our blazingly fast new browser. They came to life in television spots and promoted videos with our “Wait Face” and Reggie Watts video which, combined, had more than half a billion impressions, and a third of those views are from start to finish.

9.  Firefox in the news. We’ve received an overwhelming amount of positive coverage for the new Firefox browser. We’ve seen hundreds of headlines across the globe from Wired’s “Ciao, Chrome: Firefox Quantum Is The Browser Built for 2017, ” to El Pais’ “Firefox wants to reinvent browsers with Quantum” and Usbek & Rica’s “Firefox Quantum: ‘We’re back’.”

We’re incredibly heartened by the positive response since the launch. We’ll continue to watch these numbers, and plan to check back in the new year with an update!

 

The post Early Returns on Firefox Quantum Point to Growth appeared first on The Mozilla Blog.

Categorieën: Mozilla-nl planet

JavaScript at Mozilla: JavaScript Startup Bytecode Cache

Mozilla planet - ti, 12/12/2017 - 15:00

We want to make Firefox load pages as fast as possible, to make sure that you can get all the goods from the loaded pages available as soon as possible on your screen.

The JavaScript Startup Bytecode Cache (JSBC) is an optimization made to improve the time to fully load a page. As with many optimizations, this is a trade-off between speed and memory. In exchange for faster page-load, we store extra data in a cache.

The Context

When Firefox loads a web page, it is likely that this web page will need to run some JavaScript code. This code is transferred to the browser from the network, from the network cache, or from a service worker.

JavaScript is a general purpose programming language that is used to improve web pages. It makes them more interactive, it can request dynamically loaded content, and it can improve the way web pages are programmed with libraries.

JavaScript libraries are collections of code that are quite wide in terms of scope and usage. Most of the code of these libraries is not used (~70%) while the web page is starting up. The web page’s startup lasts beyond the first paint, it goes beyond the point when all resources are loaded, and can even last a few seconds longer after the page feels ready to be used.

When all the bytes of one JavaScript source are received we run a syntax parser. The goal of the syntax parser is to raise JavaScript syntax errors as soon as possible. If the source is large enough, it is syntax parsed on a different thread to avoid blocking the rest of the web page.

As soon as we know that there are no syntax errors, we can start the execution by doing a full parse of the executed functions to generate bytecode. The bytecode is a format that simplifies the execution of the JavaScript code by an interpreter, and then by the Just-In-Time compilers (JITs). The bytecode is much larger than the source code, so Firefox only generates the bytecode of executed functions.

Sequence diagram describing a script request, with the overhead of the Syntax parser and the Full parser in the content process. The content process request a script through IPC, the cache reply with the source, the source is parsed, then full parsed, and executed.

The Design

The JSBC aims at improving the startup of web pages by saving the bytecode of used functions in the network cache.

Saving the bytecode in the cache removes the need for the syntax-parser and replaces the full parser with a decoder. A decoder has the advantages of being smaller and faster than a parser. Therefore, when the cache is present and valid, we can run less code and use less memory to get the result of the full parser.

Having a bytecode cache however causes two problems. The first problem concerns the cache. As JavaScript can be updated on the server, we have to ensure that the bytecode is up to date with the current source code. The second problem concerns the serialization and deserialization of JavaScript. As we have to render a page at the same time, we have to ensure that we never block the main loop used to render web pages.

Alternate Data Type

While designing the JSBC, it became clear that we should not re-implement a cache.

At first sight a cache sounds like something that maps a URL to a set of bytes. In reality, due to invalidation rules, disk space, the mirroring of the disk in RAM, and user actions, handling a cache can become a full time job.

Another way to implement a cache, as we currently do for Asm.js and WebAssembly, is to map the source content to the decoded / compiled version of the source. This is impractical for the JSBC for two reasons: invalidation and user actions would have to be propagated from the first cache to this other one; and we need the full source before we can get the bytecode, so this would race between parsing and a disk load, which due to Firefox’s sandbox rules will need to deal with interprocess communication (IPC).

The approach chosen for the JSBC wasn’t to implement any new caching mechanism, but to reuse the one already available in the network cache. The network cache is usually used to handle URLs except those handle by a service worker or those using some Firefox internal privileged protocols.

The bytecode is stored in the network cache alongside the source code as “alternate content”; the user of the cache can request either one.

To request a resource, a page that is sandboxed in a content process creates a channel. This channel is then mirrored through IPC in the parent process, which resolves the protocol and dispatches it to the network. If the resource is already available in the cache, the cached version is used after verifying the validity of the resource using the ETag provided by the server. The cached content is transferred through IPC back to the content process.

To request bytecode, the content process annotates the channel with a preferred data type. When this annotation is present, the parent process, which has access to the cache, will look for an alternate content with the same data type. If there is no alternate content or if the data type differs, then the original content (the JavaScript source) is transferred. Otherwise, the alternate content (the bytecode) is transferred back to the content process with an extra flag repeating the data type.

Sequence diagram describing a script request, with the overhead of the Syntax parser and the Full parser in the content process. The content process request a script through IPC, the cache reply with the source, the source is parsed, then full parsed, and executed.

To save the bytecode, the content process has to keep the channel alive after having requested an alternate data type. When the bytecode is ready to be encoded, it opens a stream to the parent process. The parent process will save the given stream as the alternate data for the resource that was initially requested.

This API was implemented in Firefox’s network stack by Valentin Gosu and Michal Novotny, which was necessary to make this work possible. The first advantage of this interface is that it can also be implemented by Service Workers, which is currently being added in Firefox 59 by Eden Chuang and the service worker team. The second advantage of this interface is that it is not specific to JavaScript at all, and we could also save other forms of cached content, such as decoded images or precompiled WebAssembly scripts.

Serialization & Deserialization

SpiderMonkey already had a serialization and deserialization mechanism named XDR. This part of the code was used in the past to encode and decode Firefox’s internal JavaScript files, to improve Firefox startup. Unfortunately, XDR serialization and deserialization cannot handle lazily-parsed JavaScript functions and block the main thread of execution.

Saving Lazy Functions

Since 2012, Firefox parses functions lazily. XDR was meant to encode fully parsed files. With the JSBC, we need to avoid parsing unused functions. Most of the functions that are shipped to users are either never used, or not used during page startup. Thus we added support for encoding functions the way they are represented when they are unused, which is with start and end offsets in the source. Thus unused functions will only consume a minimal amount of space in addition to that taken by the source code.

Once a web page has started up, or in case of a different execution path, the source might be needed to delazify functions that were not cached. As such, the source must be available without blocking. The solution is to embed the source within the bytecode cache content. Instead of storing the raw source, the same way it is served by the network cache, it is stored in UCS2 encoding as compressed chunks¹, the same way we represent it in memory.

Non-Blocking Transcoding

XDR is a main-thread only blocking process that can serialize and deserialize bytecode. Blocking the main thread is problematic on the web, as it hangs the browser, making it unresponsive until the operation finishes. Without rewriting XDR, we managed to make this work such that it does not block the event loop. Unfortunately, deserialization and serialization could not both be handled the same way.

Deserialization was the easier of the two. As we already support parsing JavaScript sources off the main thread, decoding is just a special case of parsing, which produces the same output with a different input. So if the decoded content is large enough, we will transfer it to another thread in order to be decoded without blocking the main thread.

Serialization was more difficult. As it uses resources handled by the garbage collector, it must remain on the main thread. Thus, we cannot use another thread as with deserialization. In addition, the garbage collector might reclaim the bytecode of unused functions, and some objects attached to the bytecode might be mutated after execution, such as the object held by the JSOP_OBJECT opcode. To work around these issues, we are incrementally encoding the bytecode as soon as it is created, before its first execution.

To incrementally encode with XDR without rewriting it, we encode each function separately, along with location markers where the encoded function should be stored. Before the first execution we encode the JavaScript file with all functions encoded as lazy functions. When the function is requested, we generate the bytecode and replace the encoded lazy functions with the version that contains the bytecode. Before saving the serialization in the cache, we replace all location markers with the actual content, thus linearizing the content as if we had produced it in a single pass.

The Outcome The Threshold

The JSBC is a trade-off between encoding/decoding time and memory usage, where the right balance is determined by the number of times the page is visited. As this is a trade-off, we have the ability to choose where to set the cursor, based on heuristics.

To find the threshold, we measured the time needed to encode, the time gained by decoding, and the distribution of cache hits. The best threshold is the value that minimizes the cost function over all page loads. Thus we are comparing the cost of loading a page without any optimization (x1), the cost of loading a page and encoding the bytecode (x1.02 — x1.1), and the cost of decoding the bytecode (x0.52 — x0.7). In the best/worst case, the cache hit threshold would be 1 or 2, if we only considered the time aspect of the equation.

As a human, it seems that we should not penalize the first visit of a website and save content in the disk. You might read a one time article on a page that you will never visit again, and saving the cached bytecode to disk for future visits sounds like a net loss. For this reason, the current threshold is set to encode the bytecode only on the 4th visit, thus making it available on the 5th and subsequent visits.

The Results

The JSBC is surprisingly effective, and instead of going deeper into explanations, let’s see how it behaves on real websites that frequently load JavaScript, such as Wikipedia, Google Search results, Twitter, Amazon and the Facebook Timeline.

This graph represents the average time between the start of navigation and when the onload event for each website is fired, with and without the JavaScript Startup Bytecode Cache (JSBC). The error bars are the first quartile, median and third quartile values, over the set of approximately 30 page loads for each configuration. These results were collected on a new profile with the apptelemetry addon and with the tracking protection enabled.

While this graph shows the improvement for all pages (wikipedia: 7.8%, google: 4.9%, twitter: 5.4%, amazon: 4.9% and facebook: 12%), this does not account for the fact that these pages continue to load even after the onload event. The JSBC is configured to capture the execution of scripts until the page becomes idle.

Telemetry results gathered during an experiment on Firefox Nightly’s users reported that when the JSBC is enabled, page loads are on average 43ms faster, while being effective on only half of the page loads.

The JSBC neither improves benchmarks nor regresses them. Benchmarks’ behaviour does not represent what users actually do when visiting a website — they would not reload the pages 15 times to check the number of CPU cycles. The JSBC is tuned to capture everything until the pages becomes idle. Benchmarks are tuned to avoid having an impatient developer watching a blank screen for ages, and thus they do not wait for the bytecode to be saved before starting over.

 
Thanks to Benjamin Bouvier and Valentin Gosu for proofreading this blog post and suggesting improvements, and a special thank you to Steve Fink and Jérémie Patonnier for improving this blog post.

¹ compressed chunk: Due to a recent regression this is no longer the case, and it might be interesting for a new contributor to fix.

Categorieën: Mozilla-nl planet

Daniel Stenberg: The curl year 2017

Mozilla planet - ti, 12/12/2017 - 10:43

I’m about to take an extended vacation for the rest of the year and into the beginning of the next, so I decided I’d sum up the year from a curl angle already now, a few weeks early. (So some numbers will grow a bit more after this post.)

2017

So what did we do this year in the project, how did curl change?

The first curl release of the year was version 7.53.0 and the last one was 7.57.0. In the separate blog posts on 7.55.0, 7.56.0 and 7.57.0 you’ll note that we kept up adding new goodies and useful features. We produced a total of 9 releases containing 683 bug fixes. We announced twelve security problems. (Down from 24 last year.)

At least 125 different authors wrote code that was merged into curl this year, in the 1500 commits that were made. We never had this many different authors during a single year before in the project’s entire life time! (The 114 authors during 2016 was the previous all-time high.)

We added more than 160 new names to the THANKS document for their help in improving curl. The total amount of contributors is now over 1660.

This year we truly started to use travis for CI builds and grew from a mere two builds per commit and PR up to nineteen (with additional ones run on appveyor and elsewhere). The current build set is a very good verification that that most things still compile and work after a PR is merged. (see also the testing curl article).

Mozilla announced that they too will use colon-slash-slash in their logo. Of course we all know who had it that in their logo first… =)

 

In March 2017, we had our first ever curl get-together as we arranged curl up 2017 a weekend in Nuremberg, Germany. It was very inspiring and meeting parts of the team in real life was truly a blast. This was so good we intend to do it again: curl up 2018 will happen.

curl turned 19 years old in March. In May it surpassed 5,000 stars on github.

Also in May, we moved over the official curl site (and my personal site) to get hosted by Fastly. We were beginning to get problems to handle the bandwidth and load, and in one single step all our worries were graciously taken care of!

We got curl entered into the OSS-fuzz project, and Max Dymond even got a reward from Google for his curl-fuzzing integration work and thanks to that project throwing heaps of junk at libcurl’s APIs we’ve found and fixed many issues.

The source code (for the tool and library only) is now at about 143,378 lines of code. It grew around 7,057 lines during the year. The primary reasons for the code growth were:

  1. the new libssh-powered SSH backend (not yet released)
  2. the new mime API (in 7.56.0) and
  3. the new multi-SSL backend support (also in 7.56.0).
Your maintainer’s view

Oh what an eventful year it has been for me personally.

The first interim meeting for QUIC took place in Japan, and I participated from remote. After all, I’m all set on having curl support QUIC and I’ll keep track of where the protocol is going! I’ve participated in more interim meetings after that, all from remote so far.

I talked curl on the main track at FOSDEM in early February (and about HTTP/2 in the Mozilla devroom). I’ve then followed that up and have also had the pleasure to talk in front of audiences in Stockholm, Budapest, Jönköping and Prague through-out the year.

 

I went to London and “represented curl” in the third edition of the HTTP workshop, where HTTP protocol details were discussed and disassembled, and new plans for the future of HTTP were laid out.

 

In late June I meant to go to San Francisco to a Mozilla “all hands” conference but instead I was denied to board the flight. That event got a crazy amount of attention and I received massive amounts of love from new and old friends. I have not yet tried to enter the US again, but my plan is to try again in 2018…

I wrote and published my h2c tool, meant to help developers convert a set of HTTP headers into a working curl command line.

The single occasion that overshadows all other events and happenings for me this year by far, was without doubt when I was awarded the Polhem Prize and got a gold medal medal from no other than his majesty the King of Sweden himself. For all my work and years spent on curl no less.

Not really curl related, but in November I was also glad to be part of the huge Firefox Quantum release. The biggest Firefox release ever, and one that has been received really well.

I’ve managed to commit over 800 changes to curl through the year, which is 54% of the totals and more commits than I’ve done in curl during a single year since 2005 (in which I did 855 commits). I explain this increase mostly on inspiration from curl up and the prize, but I think it also happened thanks to excellent feedback and motivation brought by my fellow curl hackers.

We’re running towards the end of 2017 with me being the individual who did most commits in curl every single month for the last 28 months.

2018?

More things to come!

Categorieën: Mozilla-nl planet

Emily Dunham: Some northwest area tech conferences and their approximate dates

Mozilla planet - ti, 12/12/2017 - 09:00
Some northwest area tech conferences and their approximate dates

Somebody asked me recently about what conferences a developer in the pacific northwest looking to attend more FOSS events should consider. Here’s an incomplete list of conferences I’ve attended or hear good things about, plus the approximate times of year to expect their CFPs.

The Southern California Linux Expo (SCaLE) is a large, established Linux and FOSS conference in Pasadena, California. Look for its CFP at socallinuxexpo.org in September, and expect the conference to be scheduled in late February or early March each year.

If you don’t mind a short flight inland, OpenWest is a similar conference held in Utah each year. Look for its CFP in March at openwest.org, and expect the conference to happen around July. I especially enjoy the way that OpenWest brings the conference scene to a bunch of fantastic technologists who don’t always make it onto the national or international conference circuit.

Moving northward, there are a couple DevOps Days conferences in the area: Look for a PDX DevOps Days CFP around March and conference around September, and keep an eye out in case Boise DevOps Days returns.

If you’re into a balance of intersectional community and technical content, consider OSBridge (opensourcebridge.org) held in Portland around June, and OSFeels (osfeels.com) held around July in Seattle.

In Washington state, LinuxFest Northwest (CFP around December, conference around April, linuxfestnorthwest.org) in Bellingham, and SeaGL (seagl.org, CFP around June, conference around October) in Seattle are solid grass-roots FOSS conferences. For infosec in the area, consider toorcamp (toorcamp.toorcon.net, registration around March, conference around June) in the San Juan Islands.

And finally, if a full conference seems like overkill, considering attending a BarCamp event in your area. Portland has CAT BarCamp (catbarcamp.org) at Portland State University around October, and Corvallis has Beaver BarCamp (beaverbarcamp.org) each April.

This is by no means a complete list of conferences in the area, and I haven’t even tried to list the myriad specialized events that spring up around any technology. Meetup, and calagator.org for the Portland area, are also great places to find out about meetups and events.

Categorieën: Mozilla-nl planet

This Week In Rust: This Week in Rust 212

Mozilla planet - ti, 12/12/2017 - 06:00

Hello and welcome to another issue of This Week in Rust! Rust is a systems language pursuing the trifecta: safety, concurrency, and speed. This is a weekly summary of its progress and community. Want something mentioned? Tweet us at @ThisWeekInRust or send us a pull request. Want to get involved? We love contributions.

This Week in Rust is openly developed on GitHub. If you find any errors in this week's issue, please submit a PR.

Updates from Rust Community News & Blog Posts Crate of the Week

This week's crate is printpdf, a pure Rust PDF-writing library that already has a lot of features (though I note a lot of bool-taking methods). Thanks to Felix Schütt for the suggestion!

Submit your suggestions and votes for next week!

Call for Participation

Always wanted to contribute to open-source projects but didn't know where to start? Every week we highlight some tasks from the Rust community for you to pick and get started!

Some of these tasks may also have mentors available, visit the task page for more information.

If you are a Rust project owner and are looking for contributors, please submit tasks here.

Updates from Rust Core

105 pull requests were merged in the last week

New Contributors
  • Agustin Chiappe Berrini
  • Jonathan Strong
  • JRegimbal
  • Timo
Approved RFCs

Changes to Rust follow the Rust RFC (request for comments) process. These are the RFCs that were approved for implementation this week:

No RFCs were approved this week.

Final Comment Period

Every week the team announces the 'final comment period' for RFCs and key PRs which are reaching a decision. Express your opinions now. This week's FCPs are:

New RFCs Upcoming Events

If you are running a Rust event please add it to the calendar to get it mentioned here. Email the Rust Community Team for access.

Rust Jobs

Tweet us at @ThisWeekInRust to get your job offers listed here!

Quote of the Week

Although rusting is generally a negative aspect of iron, a particular form of rusting, known as “stable rust,” causes the object to have a thin coating of rust over the top, and if kept in low relative humidity, makes the “stable” layer protective to the iron below

Wikipedia on rusting of iron.

Thanks to leodasvacas for the suggestion!

Submit your quotes for next week!

This Week in Rust is edited by: nasa42 and llogiq.

Categorieën: Mozilla-nl planet

Gregory Szorc: High-level Problems with Git and How to Fix Them

Mozilla planet - mo, 11/12/2017 - 11:30

I have a... complicated relationship with Git.

When Git first came onto the scene in the mid 2000's, I was initially skeptical because of its horrible user interface. But once I learned it, I appreciated its speed and features - especially the ease at which you could create feature branches, merge, and even create commits offline (which was a big deal in the era when Subversion was the dominant version control tool in open source and you needed to speak with a server in order to commit code). When I started using Git day-to-day, it was such an obvious improvement over what I was using before (mainly Subversion and even CVS).

When I started working for Mozilla in 2011, I was exposed to the Mercurial version control, which then - and still today - hosts the canonical repository for Firefox. I didn't like Mercurial initially. Actually, I despised it. I thought it was slow and its features lacking. And I frequently encountered repository corruption.

My first experience learning the internals of both Git and Mercurial came when I found myself hacking on hg-git - a tool that allows you to convert Git and Mercurial repositories to/from each other. I was hacking on hg-git so I could improve the performance of converting Mercurial repositories to Git repositories. And I was doing that because I wanted to use Git - not Mercurial - to hack on Firefox. I was trying to enable an unofficial Git mirror of the Firefox repository to synchronize faster so it would be more usable. The ulterior motive was to demonstrate that Git is a superior version control tool and that Firefox should switch its canonical version control tool from Mercurial to Git.

In what is a textbook definition of irony, what happened instead was I actually learned how Mercurial worked, interacted with the Mercurial Community, realized that Mozilla's documentation and developer practices were... lacking, and that Mercurial was actually a much, much more pleasant tool to use than Git. It's an old post, but I summarized my conversion four and a half years ago. This started a chain of events that somehow resulted in me contributing a ton of patches to Mercurial, taking stewardship of hg.mozilla.org, and becoming a member of the Mercurial Steering Committee - the governance group for the Mercurial Project.

I've been an advocate of Mercurial over the years. Some would probably say I'm a Mercurial fanboy. I reject that characterization because fanboy has connotations that imply I'm ignorant of realities. I'm well aware of Mercurial's faults and weaknesses. I'm well aware of Mercurial's relative lack of popularity, I'm well aware that this lack of popularity almost certainly turns away contributors to Firefox and other Mozilla projects because people don't want to have to learn a new tool. I'm well aware that there are changes underway to enable Git to scale to very large repositories and that these changes could threaten Mercurial's scalability advantages over Git, making choices to use Mercurial even harder to defend. (As an aside, the party most responsible for pushing Git to adopt architectural changes to enable it to scale these days is Microsoft. Could anyone have foreseen that?!)

I've achieved mastery in both Git and Mercurial. I know their internals and their command line interfaces extremely well. I understand the architecture and principles upon which both are built. I'm also exposed to some very experienced and knowledgeable people in the Mercurial Community. People who have been around version control for much, much longer than me and have knowledge of random version control tools you've probably never heard of. This knowledge and exposure allows me to make connections and see opportunities for version control that quite frankly most do not.

In this post, I'll be talking about some high-level, high-impact problems with Git and possible solutions for them. My primary goal of this post is to foster positive change in Git and the services around it. While I personally prefer Mercurial, improving Git is good for everyone. Put another way, I want my knowledge and perspective from being part of a version control community to be put to good wherever it can.

Speaking of Mercurial, as I said, I'm a heavy contributor and am somewhat influential in the Mercurial Community. I want to be clear that my opinions in this post are my own and I'm not speaking on behalf of the Mercurial Project or the larger Mercurial Community. I also don't intend to claim that Mercurial is holier-than-thou. Mercurial has tons of user interface failings and deficiencies. And I'll even admit to being frustrated that some systemic failings in Mercurial have gone unaddressed for as long as they have. But that's for another post. This post is about Git. Let's get started.

The Staging Area

The staging area is a feature that should not be enabled in the default Git configuration.

Most people see version control as an obstacle standing in the way of accomplishing some other task. They just want to save their progress towards some goal. In other words, they want version control to be a save file feature in their workflow.

Unfortunately, modern version control tools don't work that way. For starters, they require people to specify a commit message every time they save. This in of itself can be annoying. But we generally accept that as the price you pay for version control: that commit message has value to others (or even your future self). So you must record it.

Most people want the barrier to saving changes to be effortless. A commit message is already too annoying for many users! The Git staging area establishes a higher barrier to saving. Instead of just saving your changes, you must first stage your changes to be saved.

If you requested save in your favorite GUI application, text editor, etc and it popped open a select the changes you would like to save dialog, you would rightly think just save all my changes already, dammit. But this is exactly what Git does with its staging area! Git is saying I know all the changes you made: now tell me which changes you'd like to save. To the average user, this is infuriating because it works in contrast to how the save feature works in almost every other application.

There is a counterargument to be made here. You could say that the editor/application/etc is complex - that it has multiple contexts (files) - that each context is independent - and that the user should have full control over which contexts (files) - and even changes within those contexts - to save. I agree: this is a compelling feature. However, it isn't an appropriate default feature. The ability to pick which changes to save is a power-user feature. Most users just want to save all the changes all the time. So that should be the default behavior. And the Git staging area should be an opt-in feature.

If intrinsic workflow warts aren't enough, the Git staging area has a horrible user interface. It is often referred to as the cache for historical reasons. Cache of course means something to anyone who knows anything about computers or programming. And Git's use of cache doesn't at all align with that common definition. Yet the the terminology in Git persists. You have to run commands like git diff --cached to examine the state of the staging area. Huh?!

But Git also refers to the staging area as the index. And this terminology also appears in Git commands! git help commit has numerous references to the index. Let's see what git help glossary has to say::

index A collection of files with stat information, whose contents are stored as objects. The index is a stored version of your working tree. Truth be told, it can also contain a second, and even a third version of a working tree, which are used when merging. index entry The information regarding a particular file, stored in the index. An index entry can be unmerged, if a merge was started, but not yet finished (i.e. if the index contains multiple versions of that file).

In terms of end-user documentation, this is a train wreck. It tells the lay user absolutely nothing about what the index actually is. Instead, it casually throws out references to stat information (requires the user know what the stat() function call and struct are) and objects (a Git term for a piece of data stored by Git). It even undermines its own credibility with that truth be told sentence. This definition is so bad that it would probably improve user understanding if it were deleted!

Of course, git help index says No manual entry for gitindex. So there is literally no hope for you to get a concise, understandable definition of the index. Instead, it is one of those concepts that you think you learn from interacting with it all the time. Oh, when I git add something it gets into this state where git commit will actually save it.

And even if you know what the Git staging area/index/cached is, it can still confound you. Do you know the interaction between uncommitted changes in the staging area and working directory when you git rebase? What about git checkout? What about the various git reset invocations? I have a confession: I can't remember all the edge cases either. To play it safe, I try to make sure all my outstanding changes are committed before I run something like git rebase because I know that will be safe.

The Git staging area doesn't have to be this complicated. A re-branding away from index to staging area would go a long way. Adding an alias from git diff --staged to git diff --cached and removing references to the cache from common user commands would make a lot of sense and reduce end-user confusion.

Of course, the Git staging area doesn't really need to exist at all! The staging area is essentially a soft commit. It performs the save progress role - the basic requirement of a version control tool. And in some aspects it is actually a better save progress implementation than a commit because it doesn't require you to type a commit message! Because the staging area is a soft commit, all workflows using it can be modeled as if it were a real commit and the staging area didn't exist at all! For example, instead of git add --interactive + git commit, you can run git commit --interactive. Or if you wish to incrementally add new changes to an in-progress commit, you can run git commit --amend or git commit --amend --interactive or git commit --amend --all. If you actually understand the various modes of git reset, you can use those to uncommit. Of course, the user interface to performing these actions in Git today is a bit convoluted. But if the staging area didn't exist, new high-level commands like git amend and git uncommit could certainly be invented.

To the average user, the staging area is a complicated concept. I'm a power user. I understand its purpose and how to harness its power. Yet when I use Mercurial (which doesn't have a staging area), I don't miss the staging area at all. Instead, I learn that all operations involving the staging area can be modeled as other fundamental primitives (like commit amend) that you are likely to encounter anyway. The staging area therefore constitutes an unnecessary burden and cognitive load on users. While powerful, its complexity and incurred confusion does not justify its existence in the default Git configuration. The staging area is a power-user feature and should be opt-in by default.

Branches and Remotes Management is Complex and Time-Consuming

When I first used Git (coming from CVS and Subversion), I thought branches and remotes were incredible because they enabled new workflows that allowed you to easily track multiple lines of work across many repositories. And ~10 years later, I still believe the workflows they enable are important. However, having amassed a broader perspective, I also believe their implementation is poor and this unnecessarily confuses many users and wastes the time of all users.

My initial zen moment with Git - the time when Git finally clicked for me - was when I understood Git's object model: that Git is just a content indexed key-value store consisting of a different object types (blobs, trees, and commits) that have a particular relationship with each other. Refs are symbolic names pointing to Git commit objects. And Git branches - both local and remote - are just refs having a well-defined naming convention (refs/heads/<name> for local branches and refs/remotes/<remote>/<name> for remote branches). Even tags and notes are defined via refs.

Refs are a necessary primitive in Git because the Git storage model is to throw all objects into a single, key-value namespace. Since the store is content indexed and the key name is a cryptographic hash of the object's content (which for all intents and purposes is random gibberish to end-users), the Git store by itself is unable to locate objects. If all you had was the key-value store and you wanted to find all commits, you would need to walk every object in the store and read it to see if it is a commit object. You'd then need to buffer metadata about those objects in memory so you could reassemble them into say a DAG to facilitate looking at commit history. This approach obviously doesn't scale. Refs short-circuit this process by providing pointers to objects of importance. It may help to think of the set of refs as an index into the Git store.

Refs also serve another role: as guards against garbage collection. I won't go into details about loose objects and packfiles, but it's worth noting that Git's key-value store also behaves in ways similar to a generational garbage collector like you would find in programming languages such as Java and Python. The important thing to know is that Git will garbage collect (read: delete) objects that are unused. And the mechanism it uses to determine which objects are unused is to iterate through refs and walk all transitive references from that initial pointer. If there is an object in the store that can't be traced back to a ref, it is unreachable and can be deleted.

Reflogs maintain the history of a value for a ref: for each ref they contain a log of what commit it was pointing to, when that pointer was established, who established it, etc. Reflogs serve two purposes: facilitating undoing a previous action and holding a reference to old data to prevent it from being garbage collected. The two use cases are related: if you don't care about undo, you don't need the old reference to prevent garbage collection.

This design of Git's store is actually quite sensible. It's not perfect (nothing is). But it is a solid foundation to build a version control tool (or even other data storage applications) on top of.

The title of this section has to do with sub-optimal branches and remotes management. But I've hardly said anything about branches or remotes! And this leads me to my main complaint about Git's branches and remotes: that they are very thin veneer over refs. The properties of Git's underlying key-value store unnecessarily bleed into user-facing concepts (like branches and remotes) and therefore dictate sub-optimal practices. This is what's referred to as a leaky abstraction.

I'll give some examples.

As I stated above, many users treat version control as a save file step in their workflow. I believe that any step that interferes with users saving their work is user hostile. This even includes writing a commit message! I already argued that the staging area significantly interferes with this critical task. Git branches do as well.

If we were designing a version control tool from scratch (or if you were a new user to version control), you would probably think that a sane feature/requirement would be to update to any revision and start making changes. In Git speak, this would be something like git checkout b201e96f, make some file changes, git commit. I think that's a pretty basic workflow requirement for a version control tool. And the workflow I suggested is pretty intuitive: choose the thing to start working on, make some changes, then save those changes.

Let's see what happens when we actually do this:

$ git checkout b201e96f Note: checking out 'b201e96f'. You are in 'detached HEAD' state. You can look around, make experimental changes and commit them, and you can discard any commits you make in this state without impacting any branches by performing another checkout. If you want to create a new branch to retain commits you create, you may do so (now or later) by using -b with the checkout command again. Example: git checkout -b <new-branch-name> HEAD is now at b201e96f94... Merge branch 'rs/config-write-section-fix' into maint $ echo 'my change' >> README.md $ git commit -a -m 'my change' [detached HEAD aeb0c997ff] my change 1 file changed, 1 insertion(+) $ git push indygreg fatal: You are not currently on a branch. To push the history leading to the current (detached HEAD) state now, use git push indygreg HEAD:<name-of-remote-branch> $ git checkout master Warning: you are leaving 1 commit behind, not connected to any of your branches: aeb0c997ff my change If you want to keep it by creating a new branch, this may be a good time to do so with: git branch <new-branch-name> aeb0c997ff Switched to branch 'master' Your branch is up to date with 'origin/master'.

I know what all these messages mean because I've mastered Git. But if you were a newcomer (or even a seasoned user), you might be very confused. Just so we're on the same page, here is what's happening (along with some commentary).

When I run git checkout b201e96f, Git is trying to tell me that I'm potentially doing something that could result in the loss of my data. A golden rule of version control tools is don't lose the user's data. When I run git checkout, Git should be stating the risk for data loss very clearly. But instead, the If you want to create a new branch sentence is hiding this fact by instead phrasing things around retaining commits you create rather than the possible loss of data. It's up to the user to make the connection that retaining commits you create actually means don't eat my data. Preventing data loss is critical and Git should not mince words here!

The git commit seems to work like normal. However, since we're in a detached HEAD state (a phrase that is likely gibberish to most users), that commit isn't referred to by any ref, so it can be lost easily. Git should be telling me that I just committed something it may not be able to find in the future. But it doesn't. Again, Git isn't being as protective of my data as it needs to be.

The failure in the git push command is essentially telling me I need to give things a name in order to push. Pushing is effectively remote save. And I'm going to apply my reasoning about version control tools not interfering with save to pushing as well: Git is adding an extra barrier to remote save by refusing to push commits without a branch attached and by doing so is being user hostile.

Finally, we git checkout master to move to another commit. Here, Git is actually doing something halfway reasonable. It is telling me I'm leaving commits behind, which commits those are, and the command to use to keep those commits. The warning is good but not great. I think it needs to be stronger to reflect the risk around data loss if that suggested Git commit isn't executed. (Of course, the reflog for HEAD will ensure that data isn't immediately deleted. But users shouldn't need to involve reflogs to not lose data that wasn't rewritten.)

The point I want to make is that Git doesn't allow you to just update and save. Because its dumb store requires pointers to relevant commits (refs) and because that requirement isn't abstracted away or paved over by user-friendly features in the frontend, Git is effectively requiring end-users to define names (branches) for all commits. If you fail to define a name, it gets a lot harder to find your commits, exchange them, and Git may delete your data. While it is technically possible to not create branches, the version control tool is essentially unusable without them.

When local branches are exchanged, they appear as remote branches to others. Essentially, you give each instance of the repository a name (the remote). And branches/refs fetched from a named remote appear as a ref in the ref namespace for that remote. e.g. refs/remotes/origin holds refs for the origin remote. (Git allows you to not have to specify the refs/remotes part, so you can refer to e.g. refs/remotes/origin/master as origin/master.)

Again, if you were designing a version control tool from scratch or you were a new Git user, you'd probably think remote refs would make good starting points for work. For example, if you know you should be saving new work on top of the master branch, you might be inclined to begin that work by running git checkout origin/master. But like our specific-commit checkout above:

$ git checkout origin/master Note: checking out 'origin/master'. You are in 'detached HEAD' state. You can look around, make experimental changes and commit them, and you can discard any commits you make in this state without impacting any branches by performing another checkout. If you want to create a new branch to retain commits you create, you may do so (now or later) by using -b with the checkout command again. Example: git checkout -b <new-branch-name> HEAD is now at 95ec6b1b33... RelNotes: the eighth batch

This is the same message we got for a direct checkout. But we did supply a ref/remote branch name. What gives? Essentially, Git tries to enforce that the refs/remotes/ namespace is read-only and only updated by operations that exchange data with a remote, namely git fetch, git pull, and git push.

For this to work correctly, you need to create a new local branch (which initially points to the commit that refs/remotes/origin/master points to) and then switch/activate that local branch.

I could go on talking about all the subtle nuances of how Git branches are managed. But I won't.

If you've used Git, you know you need to use branches. You may or may not recognize just how frequently you have to type a branch name into a git command. I guarantee that if you are familiar with version control tools and workflows that aren't based on having to manage refs to track data, you will find Git's forced usage of refs and branches a bit absurd. I half jokingly refer to Git as Game of Refs. I say that because coming from Mercurial (which doesn't require you to name things), Git workflows feel to me like all I'm doing is typing the names of branches and refs into git commands. I feel like I'm wasting my precious time telling Git the names of things only because this is necessary to placate the leaky abstraction of Git's storage layer which requires references to relevant commits.

Git and version control doesn't have to be this way.

As I said, my Mercurial workflow doesn't rely on naming things. Unlike Git, Mercurial's store has an explicit (not shared) storage location for commits (changesets in Mercurial parlance). And this data structure is ordered, meaning a changeset later always occurs after its parent/predecessor. This means that Mercurial can open a single file/index to quickly find all changesets. Because Mercurial doesn't need pointers to commits of relevance, names aren't required.

My Zen of Mercurial moment came when I realized you didn't have to name things in Mercurial. Having used Git before Mercurial, I was conditioned to always be naming things. This is the Git way after all. And, truth be told, it is common to name things in Mercurial as well. Mercurial's named branches were the way to do feature branches in Mercurial for years. Some used the MQ extension (essentially a port of quilt), which also requires naming individual patches. Git users coming to Mercurial were missing Git branches and Mercurial's bookmarks were a poor port of Git branches.

But recently, more and more Mercurial users have been coming to the realization that names aren't really necessary. If the tool doesn't actually require naming things, why force users to name things? As long as users can find the commits they need to find, do you actually need names?

As a demonstration, my Mercurial workflow leans heavily on the hg show work and hg show stack commands. You will need to enable the show extension by putting the following in your hgrc config file to use them:

[extensions] show =

Running hg show work (I have also set the config commands.show.aliasprefix=sto enable me to type hg swork) finds all in-progress changesets and other likely-relevant changesets (those with names and DAG heads). It prints a concise DAG of those changesets:

hg show work output

And hg show stack shows just the current line of work and its relationship to other important heads:

hg show stack output

Aside from the @ bookmark/name set on that top-most changeset, there are no names! (That @ comes from the remote repository, which has set that name.)

Outside of code archeology workflows, hg show work shows the changesets I care about 95% of the time. With all I care about (my in-progress work and possible rebase targets) rendered concisely, I don't have to name things because I can just find whatever I'm looking for by running hg show work! Yes, you need to run hg show work, visually scan for what you are looking for, and copy a (random) hash fragment into a number of commands. This sounds like a lot of work. But I believe it is far less work than naming things. Only when you practice this workflow do you realize just how much time you actually spend finding and then typing names in to hg and - especailly - git commands! The ability to just hg update to a changeset and commit without having to name things is just so liberating. It feels like my version control tool is putting up fewer barriers and letting me work quickly.

Another benefit of hg show work and hg show stack are that they present a concise DAG visualization to users. This helps educate users about the underlying shape of repository data. When you see connected nodes on a graph and how they change over time, it makes it a lot easier to understand concepts like merge and rebase.

This nameless workflow may sound radical. But that's because we're all conditioned to naming things. I initially thought it was crazy as well. But once you have a mechanism that gives you rapid access to data you care about (hg show work in Mercurial's case), names become very optional. Now, a pure nameless workflow isn't without its limitations. You want names to identify the main targets for work (e.g. the master branch). And when you exchange work with others, names are easier to work with, especially since names survive rewriting. But in my experience, most of my commits are only exchanged with me (synchronizing my in-progress commits across devices) and with code review tools (which don't really need names and can operate against raw commits). My most frequent use of names comes when I'm in repository maintainer mode and I need to ensure commits have names for others to reference.

Could Git support nameless workflows? In theory it can.

Git needs refs to find relevant commits in its store. And the wire protocol uses refs to exchange data. So refs have to exist for Git to function (assuming Git doesn't radically change its storage and exchange mechanisms to mitigate the need for refs, but that would be a massive change and I don't see this happening).

While there is a fundamental requirement for refs to exist, this doesn't necessarily mean that user-facing names must exist. The reason that we need branches today is because branches are little more than a ref with special behavior. It is theoretically possible to invent a mechanism that transparently maps nameless commits onto refs. For example, you could create a refs/nameless/ namespace that was automatically populated with DAG heads that didn't have names attached. And Git could exchange these refs just like it can branches today. It would be a lot of work to think through all the implications and to design and implement support for nameless development in Git. But I think it is possible.

I encourage the Git community to investigate supporting nameless workflows. Having adopted this workflow in Mercurial, Git's workflow around naming branches feels heavyweight and restrictive to me. Put another way, nameless commits are actually lighter-weight branches than Git branches! To the common user who just wants version control to be a save feature, requiring names establishes a barrier towards that goal. So removing the naming requirement would make Git simpler and more approachable to new users.

Forks aren't the Model You are Looking For

This section is more about hosted Git services (like GitHub, Bitbucket, and GitLab) than Git itself. But since hosted Git services are synonymous with Git and interaction with a hosted Git services is a regular part of a common Git user's workflow, I feel like I need to cover it. (For what it's worth, my experience at Mozilla tells me that a large percentage of people who say I prefer Git or we should use Git actually mean I like GitHub. Git and GitHub/Bitbucket/GitLab are effectively the same thing in the minds of many and anyone finding themselves discussing version control needs to keep this in mind because Git is more than just the command line tool: it is an ecosystem.)

I'll come right out and say it: I think forks are a relatively poor model for collaborating. They are light years better than what existed before. But they are still so far from the turn-key experience that should be possible. The fork hasn't really changed much since the current implementation of it was made popular by GitHub many years ago. And I view this as a general failure of hosted services to innovate.

So we have a shared understanding, a fork (as implemented on GitHub, Bitbucket, GitLab, etc) is essentially a complete copy of a repository (a git clone if using Git) and a fresh workspace for additional value-added services the hosting provider offers (pull requests, issues, wikis, project tracking, release tracking, etc). If you open the main web page for a fork on these services, it looks just like the main project's. You know it is a fork because there are cosmetics somewhere (typically next to the project/repository name) saying forked from.

Before service providers adopted the fork terminology, fork was used in open source to refer to a splintering of a project. If someone or a group of people didn't like the direction a project was taking, wanted to take over ownership of a project because of stagnation, etc, they would fork it. The fork was based on the original (and there may even be active collaboration between the fork and original), but the intent of the fork was to create distance between the original project and its new incantation. A new entity that was sufficiently independent of the original.

Forks on service providers mostly retain this old school fork model. The fork gets a new copy of issues, wikis, etc. And anyone who forks establishes what looks like an independent incantation of a project. It's worth noting that the execution varies by service provider. For example, GitHub won't enable Issues for a fork by default, thereby encouraging people to file issues against the upstream project it was forked from. (This is good default behavior.)

And I know why service providers (initially) implemented things this way: it was easy. If you are building a product, it's simpler to just say a user's version of this project is a git clone and they get a fresh database. On a technical level, this meets the traditional definition of fork. And rather than introduce a new term into the vernacular, they just re-purposed fork (albeit with softer connotations, since the traditional fork commonly implied there was some form of strife precipitating a fork).

To help differentiate flavors of forks, I'm going to define the terms soft fork and hard fork. A soft fork is a fork that exists for purposes of collaboration. The differentiating feature between a soft fork and hard fork is whether the fork is intended to be used as its own project. If it is, it is a hard fork. If not - if all changes are intended to be merged into the upstream project and be consumed from there - it is a soft fork.

I don't have concrete numbers, but I'm willing to wager that the vast majority of forks on Git service providers which have changes are soft forks rather than hard forks. In other words, these forks exist purely as a conduit to collaborate with the canonical/upstream project (or to facilitate a short-lived one-off change).

The current implementation of fork - which borrows a lot from its predecessor of the same name - is a good - but not great - way to facilitate collaboration. It isn't great because it technically resembles what you'd expect to see for hard fork use cases even though it is used predominantly with soft forks. This mismatch creates problems.

If you were to take a step back and invent your own version control hosted service and weren't tainted by exposure to existing services and were willing to think a bit beyond making it a glorified frontend for the git command line interface, you might realize that the problem you are solving - the product you are selling - is collaboration as a service, not a Git hosting service. And if your product is collaboration, then implementing your collaboration model around the hard fork model with strong barriers between the original project and its forks is counterproductive and undermines your own product. But this is how GitHub, Bitbucket, GitLab, and others have implemented their product!

To improve collaboration on version control hosted services, the concept of a fork needs to significantly curtailed. Replacing it should be a UI and workflow that revolves around the central, canonical repository.

You shouldn't need to create your own clone or fork of a repository in order to contribute. Instead, you should be able to clone the canonical repository. When you create commits, those commits should be stored and/or more tightly affiliated with the original project - not inside a fork.

One potential implementation is doable today. I'm going to call it workspaces. Here's how it would work.

There would exist a namespace for refs that can be controlled by the user. For example, on GitHub (where my username is indygreg), if I wanted to contribute to some random project, I would git push my refs somewhere under refs/users/indygreg/ directly to that project's. No forking necessary. If I wanted to contribute to a project, I would just clone its repo then push to my workspace under it. You could do this today by configuring your Git refspec properly. For pushes, it would look something like refs/heads/*:refs/users/indygreg/* (that tells Git to map local refs under refs/heads/ to refs/users/indygreg/ on that remote repository). If this became a popular feature, presumably the Git wire protocol could be taught to advertise this feature such that Git clients automatically configured themselves to push to user-specific workspaces attached to the original repository.

There are several advantages to such a workspace model. Many of them revolve around eliminating forks.

At initial contribution time, no server-side fork is necessary in order to contribute. You would be able to clone and contribute without waiting for or configuring a fork. Or if you can create commits from the web interface, the clone wouldn't even be necessary! Lowering the barrier to contribution is a good thing, especially if collaboration is the product you are selling.

In the web UI, workspaces would also revolve around the source project and not be off in their own world like forks are today. People could more easily see what others are up to. And fetching their work would require typing in their username as opposed to configuring a whole new remote. This would bring communities closer and hopefully lead to better collaboration.

Not requiring forks also eliminates the need to synchronize your fork with the upstream repository. I don't know about you, but one of the things that bothers me about the Game of Refs that Git imposes is that I have to keep my refs in sync with the upstream refs. When I fetch from origin and pull down a new master branch, I need to git merge that branch into my local master branch. Then I need to push that new master branch to my fork. This is quite tedious. And it is easy to merge the wrong branches and get your branch state out of whack. There are better ways to map remote refs into your local names to make this far less confusing.

Another win here is not having to push and store data multiple times. When working on a fork (which is a separate repository), after you git fetch changes from upstream, you need to eventually git push those into your fork. If you've ever worked on a large repository and didn't have a super fast Internet connection, you may have been stymied by having to git push large amounts of data to your fork. This is quite annoying, especially for people with slow Internet connections. Wouldn't it be nice if that git push only pushed the data that was truly new and didn't already exist somewhere else on the server? A workspace model where development all occurs in the original repository would fix this. As a bonus, it would make the storage problem on servers easier because you would eliminate thousands of forks and you probably wouldn't have to care as much about data duplication across repos/clones because the version control tool solves a lot of this problem for you, courtesy of having all data live alongside or in the original repository instead of in a fork.

Another win from workspace-centric development would be the potential to do more user-friendly things after pull/merge requests are incorporated in the official project. For example, the ref in your workspace could be deleted automatically. This would ease the burden on users to clean up after their submissions are accepted. Again, instead of mashing keys to play the Game of Refs, this would all be taken care of for you automatically. (Yes, I know there are scripts and shell aliases to make this more turn-key. But user-friendly behavior shouldn't have to be opt-in: it should be the default.)

But workspaces aren't all rainbows and unicorns. There are access control concerns. You probably don't want users able to mutate the workspaces of other users. Or do you? You can make a compelling case that project administrators should have that ability. And what if someone pushes bad or illegal content to a workspace and you receive a cease and desist? Can you take down just the offending workspace while complying with the order? And what happens if the original project is deleted? Do all its workspaces die with it? These are not trivial concerns. But they don't feel impossible to tackle either.

Workspaces are only one potential alternative to forks. And I can come up with multiple implementations of the workspace concept. Although many of them are constrained by current features in the Git wire protocol. But Git is (finally) getting a more extensible wire protocol, so hopefully this will enable nice things.

I challenge Git service providers like GitHub, Bitbucket, and GitLab to think outside the box and implement something better than how forks are implemented today. It will be a large shift. But I think users will appreciate it in the long run.

Conclusion

Git is an ubiquitous version control tool. But it is frequently lampooned for its poor usability and documentation. We even have research papers telling us which parts are bad. Nobody I know has had a pleasant initial experience with Git. And it is clear that few people actually understand Git: most just know the command incantations they need to know to accomplish a small set of common activities. (If you are such a person, there is nothing to be ashamed about: Git is a hard tool.)

Popular Git-based hosting and collaboration services (such as GitHub, Bitbucket, and GitLab) exist. While they've made strides to make it easier to commit data to a Git repository (I purposefully avoid saying use Git because the most usable tools seem to avoid the git command line interface as much as possible), they are often a thin veneer over Git itself (see forks). And Git is a thin veneer over a content indexed key-value store (see forced usage of bookmarks).

As an industry, we should be concerned about the lousy usability of Git and the tools and services that surround it. Some may say that Git - with its near monopoly over version control mindset - is a success. I have a different view: I think it is a failure that a tool with a user experience this bad has achieved the success it has.

The cost to Git's poor usability can be measured in tens if not hundreds of millions of dollars in time people have wasted because they couldn't figure out how to use Git. Git should be viewed as a source of embarrassment, not a success story.

What's really concerning is that the usability problems of Git have been known for years. Yet it is as popular as ever and there have been few substantial usability improvements. We do have some alternative frontends floating around. But these haven't caught on.

I'm at a loss to understand how an open source tool as popular as Git has remained so mediocre for so long. The source code is out there. Anybody can submit a patch to fix it. Why is it that so many people get tripped up by the same poor usability issues years after Git became the common version control tool? It certainly appears that as an industry we have been unable or unwilling to address systemic deficiencies in a critical tool. Why this is, I'm not sure.

Despite my pessimism about Git's usability and its poor track record of being attentive to the needs of people who aren't power users, I'm optimistic that the future will be brighter. While the ~7000 words in this post pale in comparison to the aggregate word count that has been written about Git, hopefully this post strikes a nerve and causes positive change. Just because one generation has toiled with the usability problems of Git doesn't mean the next generation has to suffer through the same. Git can be improved and I encourage that change to happen. The three issues above and their possible solutions would be a good place to start.

Categorieën: Mozilla-nl planet

Jared Hirsch: Test Pilot in 2018: Lessons Learned from Screenshots

Mozilla planet - sn, 09/12/2017 - 01:36
Test Pilot in 2018: Lessons learned from graduating Screenshots into Firefox

Wil and I were talking about the Bugzilla vs Github question for Screenshots a couple of days ago, and I have to admit that I’ve come around to “let’s just use Bugzilla for everything, and just ride the trains, and work with the existing processes as much as possible.”

I think it’s important to point out that this is a complete departure from my original point of view. Getting an inside view of how and why Firefox works the way it does has changed my mind. Everything just moves slower, with so many good reasons for doing so (good topic for another blog post). Given that our goal is to hand Screenshots off, just going with the existing processes, minimizing friction, is the way to go.

If Test Pilot’s goals include landing stuff in Firefox, what does this mean for the way that we run earlier steps in the product development process?

Suggestions for experiments that the Test Pilot team will graduate into Firefox Ship maximal, not minimal, features

I don’t think we should plan on meaningful iteration once a feature lands in Firefox. It’s just fundamentally too slow to iterate rapidly, and it’s way too hard for a very small team to ship features faster than that default speed (again, many good reasons for that friction).

The next time we graduate something into Firefox, we should plan to ship much more than a minimum viable product, because we likely won’t get far past that initial landing point.

When in Firefox, embrace the Firefox ways

Everything we do, once an experiment gets approval to graduate, should be totally Firefox-centric. Move to Bugzilla for bugs (except, maybe, for server bugs). Mozilla-central for code, starting with one huge import from Github (again, except for server code). Git-cinnabar works really well, if you prefer git over mercurial. We have committers within the team now, and relationships with reviewers, so the code side of things is pretty well sorted.

Similarly for processes: we should just go with the existing processes to the best of our ability, which is to say, constantly ask the gatekeepers if we’re doing it right. Embrace the fact that everything in Firefox is high-touch, and use existing personal relationships to ask early and often if we’ve missed any important steps. We will always miss something, whether it’s new rules for some step, or neglecting to get signoff from some newly-created team, but we can plan for that in the schedule. I think we’ve hit most of the big surprises in shipping Screenshots.

Aim for bigger audiences in Test Pilot

Because it’s difficult to iterate on features when code is inside Firefox, we should make our Test Pilot audience as close to a release audience as possible. We want to aim for the everyday users, not the early adopters. I think we can do this by just advertising Test Pilot experiments more heavily.

By gathering data from a larger audience, our data will be more representative of the release audience, and give us a better chance of feature success.

Aim for web-flavored features / avoid dramatic changes to the Firefox UI

Speaking as the person who did “the weird Gecko stuff” on both Universal Search and Min-Vid, doing novel things with the current Firefox UI is hard, for all the reasons Firefox things are hard: the learning curve is significant and it’s high-touch. Knowledge of how the code works is confined to a small group of people, the docs aren’t great, and learning how things work requires reading the source code, plus asking for help on IRC.

Given that our team’s strengths lie in web development, we will be more successful if our features focus on the webby things: cross-device, mobile, or cloud integration; bringing the ‘best of the web’ into the browser. This is stuff we’re already good at, stuff that could be a differentiator for Firefox just as much as new Firefox UI, and we can iterate much more quickly on server code.

This said, if Firefox Product wants to reshape the browser UI itself in powerful, unexpected, novel ways, we can do it, but we should have some Firefox or Platform devs committed to the team for a given experiment.

Categorieën: Mozilla-nl planet

Mozilla VR Blog: Experimenting with AR and the Web on iOS

Mozilla planet - fr, 08/12/2017 - 20:48
Experimenting with AR and the Web on iOS

Today, we’re happy to announce that the WebXR Viewer app is available for download on iTunes. In our recent announcement of our Mixed Reality program, we talked about some explorations we were doing to extend WebVR to include AR and MR technology. In that post, we pointed at an iOS WebXR Viewer app we had developed to allow us to experiment with these ideas on top of Apple’s ARKit. While the app is open source, we wanted to let developers experiment with web-based AR without having to build the app themselves.

The WebXR Viewer app lets you view web pages created with the webxr-polyfill Javascript library, an experimental library we created as part of our explorations. This app is not intended to be a full-fledged web browser, but rather a way to test, demonstrate and share AR experiments created with web technology.

Code written with the webxr-polyfill runs in this app, as well as Google’s experimental WebARonARCore APK on Android. We are working on supporting other AR and VR browsers, including WebVR on desktop.

Experimenting with AR and the Web on iOS

We’ve also been working on integrating the webxr-polyfill into the popular three.js graphics library and the A-Frame framework to make it easy for three.js and A-Frame developers to try out these ideas. We are actively working on these libraries and using them in our own projects; while they are works-in-progress, each contains some simple examples to help you get started with them. We welcome feedback and contributions!

Experimenting with AR and the Web on iOS

What’s Next?

We are not the only company interested in how WebVR could be extended to support AR and MR; for example, Google released a WebAR extension to WebVR with the WebARonARCore application mentioned above, and discussions on the WebVR standards documents has been lively with these issues.

As a result, the companies developing the WebVR API (including us) recently decided to rename the WebVR 2.0 proposal to the WebXR Device API and rename the WebVR Community Group to the Immersive Web Community Group, to reflect broad agreement that AR and VR devices should be exposed through a common API. The WebXR API we created was based on WebVR2.0; we will be aligning it with the WebXR Device API as is develops and continue using it to explore ideas for exposing additional AR concepts into WebXR.

We’ve been working on this app since earlier this fall, before the WebVR community decided to move from WebVR to WebXR, and we are looking forward to continue updating the app and libraries as the WebXR Device API is developed. We will continue to use this app as a platform for our experiments with WebXR on iOS using ARKit, and welcome others (both inside and outside the Immersive Web Community Group) to work with us on the app, the javascript libraries, and demonstrations of how the web can support AR and VR moving forward.

Categorieën: Mozilla-nl planet

The Firefox Frontier: What’s on the new Firefox menus? Speed

Mozilla planet - fr, 08/12/2017 - 19:16

If you’ve downloaded the new Firefox, you’ve probably noticed that we did some redecorating. Our new UI design (we call it Photon) is bright, bold, and inspired by the speed … Read more

The post What’s on the new Firefox menus? Speed appeared first on The Firefox Frontier.

Categorieën: Mozilla-nl planet

Pages