mozilla

Mozilla Nederland LogoDe Nederlandse
Mozilla-gemeenschap

Firefox Presents: A YouTube creator blending femininity and engineering

Mozilla Blog - fr, 20/05/2022 - 17:44

Being feminine and having technical skills are not mutually exclusive. This should be obvious, but Xyla Foxlin has had to work hard to prove femininity and engineering can go hand in hand. While in college, she started a YouTube channel called Beauty and the Bolt, where she co-produced tutorials on STEM topics like electronics, math and physics. Schools and other programs used the videos to teach young people, and the project became a nonprofit where she served as executive director. Now, Xyla has her own YouTube channel, where she gets to “play around” with whatever material she can get her hands on in her garage. She made a corset out of a cedar strip. She built a rocket and launched it, wearing a dress. Last year, she bought a small plane – something she’s worked toward since learning to fly an aircraft while working as an airport crew member during high school (“I’d show up to fuel this guy’s plane and he’d be like, ‘No way.’”) We talked to Xyla about getting into engineering, what she loves about the internet and building a Tesla coil for a beauty pageant. 

Tell us about your name.

I have very interesting parents and they let me name myself when I was like 10. They had Foxlin as a combination of both of their names and they both changed their names when they got married. So changing names is sort of a family hobby. 

They named me Kayla because they thought they had made it up. And then it was  on the top 10 girls’ names list that year, and they were really heartbroken about it. They spent my whole childhood talking about how much they regretted naming me Kayla. What’s even better is my middle name is Ray. So they named me Kayla Ray, and I’m like a Jewish Asian from Boston,not a Southern Belle. 

At one point, I was sitting at a diner with my parents and my mom said, “Pick a new name. We’ll just go change it like right now.” My dad really wanted a high Scrabble scoring name and I liked X’s more than Zs because I was 10. I didn’t understand the adult implications of the letter X yet. Xena was on the list, but the warrior princess kind of did it first. By the end of the night, my new name was Xyla.

You were in the robotics team in high school but didn’t build robots until college. What changed?

I was in the back hoping someone would let me do something. But the reality is a lot of times when you join any organization, you have to get in there and be really loud and be like, “I’m going to do this thing. I’m going to try it.” And that is not really socially conditioned into most girls. 

So I was quiet and obedient and I did whatever was told to me. I was told to organize the outreach events, make the engineering notebook or organize the bake sale. I organized a lot of big sales and raised a lot of money. 

When I went to college, I was like, “I’m going to be the best engineer I can possibly be.” My freshman year, I joined  the robotics team. I joined the rocket team. I was going to hackathons on weekends. I was building robots for this NASA robotic mining competition

Xyla Foxlin, sitting in front of a computer, points at a video playing on a monitor.Photo: Dana Lynn Pleasant for Mozilla

Tell us about the YouTube channel you started in college, Beauty and the Bolt. 

It was born out of an issue I saw with the Makerspace that I worked at in school. There was this moment where a girl walked in and she wanted to 3D-print a phone case. She wasn’t an engineer. It was maybe her first time in this space. She was already really uncomfortable. We were really busy that day, and so my boss was like, “Just give her the text tutorial.” So I sat her down on the machine, I opened up the document for her and said, “Just read through this. I’ll get you set up and then come see me if you have any issues.” It was 42 pages long. I saw her scroll through it, and then when I had my back turned, she had closed her laptop.

I thought, “That sucks. We need a better way of doing this.” So I reached out to one of my friends and asked, “How do you feel about making video tutorials for the space?” Because I think that if someone had a video to watch on how to do it, it would lower the barrier to entry for the people who are uncomfortable. 

So we made a handful of videos on how to use machines in the Makerspace. We posted them on YouTube. A ton of schools and other Makerspaces found them and started using them as their training. We started getting requests for more videos and then it snowballed into a nonprofit.

You also competed in pageants for a year during college and won Miss Greater Cleveland as part of the Miss America program. Why did you decide to explore that?

I was sort of angry about how there was this notion that I couldn’t be super feminine and also be an engineer at the same time. People would make fun of me for wearing pink and flowers. And I thought , screw all of you. I’m just going to go compete at Miss Ohio and see what happens. 

One of the other reasons I did it is I wanted an excuse to build a musical Tesla coil. I read through the Miss America talent rules and fire is not allowed. Although fire is a plasma, not all plasma is technically fire. I figured showing up with a lightning machine was not technically outside of the rules of Miss America. So there’s the mischievous part of me that was like, “Now I have to do it.” 

I built a little Tesla coil and I hooked it up to my electric violin and played. It was part of the personal mission I had of trying to get girls who are more feminine to know that they could do stuff like engineering, and that it wouldn’t make them any less of who they are.

Xyla Foxlin speaks into a microphone.Photo: Dana Lynn Pleasant for Mozilla

Now you run your own YouTube channel.

With the nonprofit, I felt a lot of pressure to keep my projects simple and classroom friendly. When I started my own channel,, I want to be able to build whatever wacky, crazy idea that I can come up with. I want to be able to push myself really hard and make projects that I don’t even think I know how to do. I am me, the person Xyla Foxlin and I’m building the things that Xyla Foxlin wants to build.

What would high school freshman Xyla think if she could see you now?

She’d be so jazzed. I don’t think there was ever a moment in my life where I thought I would own an airplane at 25. I have played that moment in my mind a bunch of times: What if I could travel back in time and talk to the 13-year-old version of myself? That it paid off and it was worth it.

What’s your favorite part about the internet?

One of my favorite things about being my age and living in 2022 is that the internet lets you create whatever job that you want. You have to be very entrepreneurial. You have to be willing to put yourself out there. It’s not for everyone, but the tools are at your disposal to forge your own path and create the job that you want.

Firefox is exploring all the ways the internet makes our planet an awesome place. Almost everything we do today ties back to the online world in some way — so, join us in highlighting the funny, weird, inspiring and courageous stories that remind us why we love the world wide web.

Xyla Foxlin jumps in front of a mural. Get the browser that makes a difference Download Firefox

The post Firefox Presents: A YouTube creator blending femininity and engineering appeared first on The Mozilla Blog.

Categorieën: Mozilla-nl planet

Firefox Add-on Reviews: The pandemic changed everything — even the way we use browser extensions

Mozilla planet - wo, 09/03/2022 - 18:30

On March 11, 2020 the World Health Organization declared COVID-19 a global pandemic. Within days, practically the entire planet was on lockdown. We went indoors and online. 

So how did the sudden mass migration online impact browser extension usage? Pretty dramatically, it turns out. On this two-year mark of the start of the pandemic we looked back at Firefox extension installs and usage data to discover several compelling trends.  

We wanted to see the types of extensions Firefox users were drawn to during the early days of the lockdown, so we compared average monthly installs for three months at the start of the lockdown (March – May ‘20) to average monthly installs for the three months prior (Dec. ‘19 – Feb. ‘20). For this exercise we only looked at Firefox extensions with a minimum of 10,000 users. Here are some things we found… 

We need all the help we can get working and educating from home 

As much of the world suddenly transitioned their work and schooling to home computers in March 2020, Firefox users flocked to a handful of notable extensions to make life a little easier.

Which extension got the biggest install boost during the first few months of lockdown?

Zoom Scheduler

Of course it’s a Zoom extension. Zoom Scheduler installs increased 1,522%. 

Created by Zoom, their extension integrates Google Calendar with the Zoom app so you can conveniently schedule or start Zoom meetings directly from your Google Calendar on Firefox. 

Dark Background and Light Text

When you’re suddenly doing everything on a computer, you need to take care of those precious peepers. Dark Background and Light Text installs jumped an eye-popping 351%. 

By default the extension flips the colors of every web page you visit, so your common light colored backgrounds become text colors and vice versa. But all color combinations are customizable, freeing you to adjust everything to taste. You can also set exceptions for certain websites that have a native look you prefer. 

Tree Style Tab

Apparently we suffered from too many open tabs at the start of the pandemic (work tabs! school tabs! breaking news!). Tree Style Tab (+126%) gives Firefox users a great way to cope with tab overload.  

The extension helps you organize all of your open tabs into a cascading “tree” format, so you can group tabs by topic and get a clean visual layout of everything. 

To Google Translate

This translation tool was already very popular when the lockdown started, so it’s curious its install rate still climbed a whopping 126%, going from 222,000 installs/month to more than 504,000. 

To Google Translate provides easy right-click mouse access to the Google Translate service, eliminating the nuisance of copying text and navigating away from the page you’re on just to translate. 

We can only speculate why Firefox users wanted translation extensions when the pandemic started (To Google Translate wasn’t an aberration; all of the top translation extensions had install increases), but it’s worth wondering if a big factor wasn’t a common desire to get broader perspectives, news and information about the emerging virus. Perhaps Firefox users who sought out international news coverage would explain the increased appetite for translation extensions? 

To Google Translate had particularly impressive install gains in China (+164%), the U.S. (+134%), France (+101%), Russia (+76%), and Germany (+75%).

We started taking our digital privacy more seriously

Privacy extensions are consistently the most popular type of Firefox add-on. Even so, the pandemic pushed a few notable extensions to new heights. 

Cookie AutoDelete

Already averaging an impressive 42,000 monthly installs before the lockdown, Cookie AutoDelete skyrocketed 386% to averaging more than 206,000 installs/month between March – May 2020. 

The extension automatically eliminates any unused cookies whenever you close a tab, unless you specify sites you trust and wish to maintain cookie contact.

Facebook Container

Naturally a lot of people spent more time on the world’s largest social media platform to stay connected during lockdown. But many folks also want to enjoy this sense of connectedness without Facebook following them around the internet. So it makes sense Mozilla’s very own Facebook Container was among the most popular extensions at the start of the lockdown—installs climbed 211%. 

The extension isolates your Facebook identity into a separate “container” so Facebook can’t track your moves around the web. Indeed the social media giant wants to learn everything it can about your web habits outside of Facebook. 

Privacy Badger

No sophisticated setup required. Just install Privacy Badger and it will silently work in the background to block some of the web’s sneakiest trackers. Privacy Badger actually gets better at its job the longer you have it installed; it “learns” more about hidden trackers the more you naturally encounter them navigating the web. 

Privacy Badger installs lept 80% globally during those first few months of lockdown, with particularly keen interest from Italy (+135%) and Brazil (+119%). 

We found ways to stay connected, entertained and inspired

It wasn’t all work and no play online during the dreadful early days of the lockdown. 

BetterTTV

Installs of this top Twitch extension were up 46% as we turned to each other for live streaming entertainment. BetterTTV can radically alter the look and feel of Twitch with new emoticons, a more focused interface, content filters, and a reimagined chat experience (including Anonymous Chat so you can join a channel without drawing attention). 

BetterTTV was particularly popular in Germany, where installs soared 76%. 

Watch2gether extension

A lot of people became “watch party” animals during lockdown. If you haven’t tried social streaming, it’s a fun way to enjoy synced videos while chatting with friends online. Watch2gether extension became a popular choice for social stream parties (+82%). 

You don’t need the extension to use the web-based Watch2gether platform, but the extension provides a few added perks when used in conjunction with the web service, such as easy browser access to your watch rooms and the ability stream videos that aren’t directly supported by the Watch2gether website (e.g. the video source doesn’t offer an embeddable version). 

YouTube Non-Stop

A 45% install increase means we started listening to a lot more music on YouTube when the lockdown hit. YouTube Non-Stop solves the problem of that annoying “Video paused. Continue watching?” prompt by automatically clicking it in the background so your groove never comes to a grinding halt. 

Two years into this pandemic, our day-to-day lives — and how we rely on browsers — have permanently shifted. As we continue to adjust to new life and work routines, these incredible extensions are as useful as ever. If you want to explore more, please visit addons.mozilla.org to browse thousands of Firefox extensions. 

Categorieën: Mozilla-nl planet

Data@Mozilla: Documenting outages to seek transparency and accountability

Mozilla planet - wo, 09/03/2022 - 11:39

Mozilla Opens Access to Dataset on Network Outages

The internet doesn’t just have a simple on/off switch — rather, there are endless ways connectivity can be ruptured or impaired, both intentionally (cyber attacks) and unintentionally (weather events). While a difficult task, knowing more about how connectivity is affected and where can help us better understand the outages of today, as well as who (or what) is behind them to prevent them in the future.

Today, Mozilla is opening access to an anonymous telemetry dataset that will enable researchers to explore signals of network outages around the world. The aim of the release is to create more transparency around outages, a key step towards achieving accountability for a more open and resilient internet for all. We believe this data, which is anonymized and aggregated to ensure user privacy, will be valuable to a range of actors, from technical communities working on network resilience to digital rights advocates documenting internet outages.

While a number of outage measurements rely on hardware installations or require people experiencing outages to initiate their own measurements, Mozilla’s data originates from everyday use of Firefox browsers around the world, essentially creating a timeline of both regular and irregular connectivity patterns across large populations of internet users. In practice, this means that when significant numbers of Firefox clients experience connection failures for any reason, this registers in Mozilla’s telemetry once a connection is restored. At a country or city level, this can provide indications of whether an outage occurred.

In addition to being able to see city-specific outages, Mozilla’s dataset also offers a comparatively high degree of technical granularity which allows researchers to isolate different types of connectivity issues in a given time frame. Because outages are often shrouded in secrecy, researchers can sometimes only estimate the exact nature of a local outage. Combined with other data sources, for instance from companies like Google and Cloudflare, Mozilla’s dataset will be a valuable source to corroborate reports of outages.

Whenever internet connections are cut, the safety, security and health of millions of people may be at stake. Documenting outages is an important step in seeking transparency and accountability, particularly in contexts of uncertainty or insecurity around recent events.

“Mozilla is excited to make our relevant telemetry data available to researchers around the world to aid efforts toward transparency and accountability. Internet outages can be hard to measure and it is very fortunate that there is a dedicated international community that is focused on this crucial task. We look forward to interesting ways in which the community will use this anonymous dataset to help keep the internet an open, global public resource,” says Daniel McKinley, VP, Data Science and Analytics at Mozilla.

Over the course of 2020 and 2021, researchers from Internet Outage Detection and Analysis (IODA) of the Center for Applied Internet Data Analysis (CAIDA), Open Observatory of Network Interference (OONI), RIPE Network Coordination Center (RIPE NCC), Measurement Lab (M-Lab), Internews and Access Now joined a collaborative effort to compare existing data on outages with Mozilla’s dataset. Their feedback has uniformly stated that this data would be helpful to the internet outage measurement community in critical work across the world.

“We are thrilled that Mozilla’s dataset on outages is being published. Our own analysis of the data demonstrated that it is a valuable resource for investigating Internet outages worldwide, complimenting other public datasets. Unlike other datasets, it provides geographical granularity with novel insights and new research opportunities. We are confident that it will serve as an extremely valuable resource for researchers, human rights advocates, and the broader Internet freedom community,” says Maria Xynou, the Research and Partnerships Director of OONI.

In order to gain access to the dataset, which is licensed under the Creative Common Public Domain license (CC0) and contains data from January 2020 onward, researchers can apply via this Google Form, after which Mozilla representatives will reach out with next steps. More information and background on the project and the dataset can be found on Mozilla Wiki.

We look forward to seeing the exciting work that internet outage researchers will produce with this dataset and hope to inspire more use of aggregated datasets for public good.

This post was co-authored by Solana Larsen, Alessio Placitelli, Udbhav Tiwari.

Categorieën: Mozilla-nl planet

The Rust Programming Language Blog: Security advisory for the regex crate (CVE-2022-24713)

Mozilla planet - ti, 08/03/2022 - 01:00

This is a cross-post of the official security advisory. The official advisory contains a signed version with our PGP key, as well.

The Rust Security Response WG was notified that the regex crate did not properly limit the complexity of the regular expressions (regex) it parses. An attacker could use this security issue to perform a denial of service, by sending a specially crafted regex to a service accepting untrusted regexes. No known vulnerability is present when parsing untrusted input with trusted regexes.

This issue has been assigned CVE-2022-24713. The severity of this vulnerability is "high" when the regex crate is used to parse untrusted regexes. Other uses of the regex crate are not affected by this vulnerability.

Overview

The regex crate features built-in mitigations to prevent denial of service attacks caused by untrusted regexes, or untrusted input matched by trusted regexes. Those (tunable) mitigations already provide sane defaults to prevent attacks. This guarantee is documented and it's considered part of the crate's API.

Unfortunately a bug was discovered in the mitigations designed to prevent untrusted regexes to take an arbitrary amount of time during parsing, and it's possible to craft regexes that bypass such mitigations. This makes it possible to perform denial of service attacks by sending specially crafted regexes to services accepting user-controlled, untrusted regexes.

Affected versions

All versions of the regex crate before or equal to 1.5.4 are affected by this issue. The fix is included starting from regex 1.5.5.

Mitigations

We recommend everyone accepting user-controlled regexes to upgrade immediately to the latest version of the regex crate.

Unfortunately there is no fixed set of problematic regexes, as there are practically infinite regexes that could be crafted to exploit this vulnerability. Because of this, we do not recommend denying known problematic regexes.

Acknowledgements

We want to thank Addison Crump for responsibly disclosing this to us according to the Rust security policy, and for helping review the fix.

We also want to thank Andrew Gallant for developing the fix, and Pietro Albini for coordinating the disclosure and writing this advisory.

Categorieën: Mozilla-nl planet

Jan-Erik Rediger: Four-year Moziversary

Mozilla planet - fr, 04/03/2022 - 15:20

It's my fourth Moziversary. It's been 4 years (and three days) now since I joined Mozilla as a Telemetry engineer. I joined Mozilla as a Firefox Telemetry Engineer in March 2018, I blogged three times already: 2019, 2020, 2021.

The past year continued to be challenging. Except for a brief 3-week period the Berlin office stayed close, so we all continue to work from home. I haven't met (most of) my team mates in person since 2020. I hope that in 2022 I will have the chance to meet some of them again, maybe even all at once.

I already spent some time on looking back on most of the work that happened on the Glean project last year in a This Week in Glean post, so no need to reiterate that.

For 2022 Glean will be about stabilizing, some new features and more widespread adoption across our products. I'm still excited to continue that work. We will see what else I pick up along the way.

Thank you

Thanks to my team mates Alessio, Bea, Chris, Travis, and Mike, and also thanks to the bigger data engineering team within Mozilla. And thanks to all the other people at Mozilla I work with.

Categorieën: Mozilla-nl planet

Hacks.Mozilla.Org: Announcing Interop 2022

Mozilla planet - to, 03/03/2022 - 18:00

A key benefit of the web platform is that it’s defined by standards, rather than by the code of a single implementation. This creates a shared platform that isn’t tied to specific hardware, a company, or a business model.

Writing high quality standards is a necessary first step to an interoperable web platform, but ensuring that browsers are consistent in their behavior requires an ongoing process. Browsers must work to ensure that they have a shared understanding of web standards, and that their implementation matches that understanding.

Interop 2022

Interop 2022 is a cross-browser initiative to find and address the most important interoperability pain points on the web platform. The end result is a public metric that will assess progress toward fixing these interoperability issues.

Interop 2022 scores. Chrome/Edge 71, Firefox 74, and Safari 73.

In order to identify the areas to include, we looked at two primary sources of data:

  • Web developer feedback (e.g., through developer facing surveys including MDN’s Web DNA Report) on the most common pain points they experience.
  • End user bug reports (e.g., via webcompat.com) that could be traced back to implementation differences between browsers.

During the process of collecting this data, it became clear there are two principal kinds of interoperability problems which affect end users and developers:

  • Problems where there’s a relatively clear and widely accepted standard, but where implementations are incomplete or buggy.
  • Problems where the standard is missing, unclear, or doesn’t match the behavior sites depend on.

Problems of the first kind have been termed “focus areas”. For these we use web-platform-tests: a large, shared testsuite that aims to ensure web standards are implemented consistently across browsers. It accepts contributions from anyone, and browsers, including Firefox, contribute tests as part of their process for fixing bugs and shipping new features.

The path to improvement for these areas is clear: identify or write tests in web-platform-tests that measure conformance to the relevant standard, and update implementations so that they pass those tests.

Problems of the second kind have been termed “investigate areas”. For these it’s not possible to simply write tests as we’re not really sure what’s necessary to reach interoperability. Such unknown unknowns turn out to be extremely common sources of developer and user frustration!

We’ll make progress here through investigation. And we’ll measure progress with more qualitative goals, e.g., working out what exact behavior sites depend on, and what can be implemented in practice without breaking the web.

In all cases, the hope is that we can move toward a future in which we know how to make these areas interoperable, update the relevant web standards for them, and measure them with tests as we do with focus areas.

Focus areas

Interop 2022 has ten new focus areas:

  • Cascade Layers
  • Color Spaces and Functions
  • Containment
  • Dialog Element
  • Forms
  • Scrolling
  • Subgrid
  • Typography and Encodings
  • Viewport Units
  • Web Compat

Unlike the others the Web Compat area doesn’t represent a specific technology, but is a group of specific known problems with already shipped features, where we see bugs and deviations from standards cause frequent site breakage for end users.

There are also five additional areas that have been adopted from Google and Microsoft’s “Compat 2021” effort:

  • Aspect Ratio
  • Flexbox
  • Grid
  • Sticky Positioning
  • Transforms

A browser’s test pass rate in each area contributes 6% — totaling at 90% for fifteen areas — of their score of Interop 2022.

We believe these are areas where the standards are in good shape for implementation, and where improving interoperability will directly improve the lives of developers and end users.

Investigate areas

Interop 2022 has three investigate areas:

  • Editing, contentEditable, and execCommand
  • Pointer and Mouse Events
  • Viewport Measurement

These are areas in which we often see complaints from end users, or reports of site breakage, but where the path toward solving the issues isn’t clear. Collaboration between vendors is essential to working out how to fix these problem areas, and we believe that Interop 2022 is a unique opportunity to make progress on historically neglected areas of the web platform.

The overall progress in this area will contribute 10% to the overall score of Interop 2022. This score will be the same across all browsers. This reflects the fact that progress on the web platform requires browsers to collaborate on new or updated web standards and accompanying tests, to achieve the best outcomes for end users and developers.

Contributions welcome!

Whilst the focus and investigate areas for 2022 are now set, there is still much to do. For the investigate areas, the detailed targets need to be set, and the complex work of understanding the current state of the art, and assessing the options to advance it, are just starting. Additional tests for the focus areas might be needed as well to address particular edge cases.

If this sounds like something you’d like to get involved with, follow the instructions on the Interop 2022 Dashboard.

Finally, it’s also possible that Interop 2022 is missing an area you consider to be a significant pain point. It won’t be possible to add areas this year, but, if the effort is a success we may end up running further iterations. Feedback on browser differences that are making your life hard as developer or end user are always welcome and will be helpful for identifying the correct focus and investigate areas for any future edition.

Partner announcements

Bringing Interop 2022 to fruition was a collaborative effort and you might be interested in the other announcements:

The post Announcing Interop 2022 appeared first on Mozilla Hacks - the Web developer blog.

Categorieën: Mozilla-nl planet

Ludovic Hirlimann: My geeking plans for this summer

Thunderbird - to, 07/05/2015 - 10:39

During July I’ll be visiting family in Mongolia but I’ve also a few things that are very geeky that I want to do.

The first thing I want to do is plug the Ripe Atlas probes I have. It’s litle devices that look like that :

Hello @ripe #Atlas !

They enable anybody with a ripe atlas or ripe account to make measurements for dns queries and others. This helps making a global better internet. I have three of these probes I’d like to install. It’s good because last time I checked Mongolia didn’t have any active probe. These probes will also help Internet become better in Mongolia. I’ll need to buy some network cables before leaving because finding these in mongolia is going to be challenging. More on atlas at https://atlas.ripe.net/.

The second thing I intend to do is map Mongolia a bit better on two projects the first is related to Mozilla and maps gps coordinateswith wifi access point. Only a little part of The capital Ulaanbaatar is covered as per https://location.services.mozilla.com/map#11/47.8740/106.9485 I want this to be way more because having an open data source for this is important in the future. As mapping is my new thing I’ll probably edit Openstreetmap in order to make the urban parts of mongolia that I’ll visit way more usable on all the services that use OSM as a source of truth. There is already a project to map the capital city at http://hotosm.org/projects/mongolia_mapping_ulaanbaatar but I believe osm can server more than just 50% of mongolia’s population.

I got inspired to write this post by mu son this morning, look what he is doing at 17 months :

Geeking on a Sun keyboard at 17 months
Categorieën: Mozilla-nl planet

Andrew Sutherland: Talk Script: Firefox OS Email Performance Strategies

Thunderbird - to, 30/04/2015 - 22:11

Last week I gave a talk at the Philly Tech Week 2015 Dev Day organized by the delightful people at technical.ly on some of the tricks/strategies we use in the Firefox OS Gaia Email app.  Note that the credit for implementing most of these techniques goes to the owner of the Email app’s front-end, James Burke.  Also, a special shout-out to Vivien for the initial DOM Worker patches for the email app.

I tried to avoid having slides that both I would be reading aloud as the audience read silently, so instead of slides to share, I have the talk script.  Well, I also have the slides here, but there’s not much to them.  The headings below are the content of the slides, except for the one time I inline some code.  Note that the live presentation must have differed slightly, because I’m sure I’m much more witty and clever in person than this script would make it seem…

Cover Slide: Who!

Hi, my name is Andrew Sutherland.  I work at Mozilla on the Firefox OS Email Application.  I’m here to share some strategies we used to make our HTML5 app Seem faster and sometimes actually Be faster.

What’s A Firefox OS (Screenshot Slide)

But first: What is a Firefox OS?  It’s a multiprocess Firefox gecko engine on an android linux kernel where all the apps including the system UI are implemented using HTML5, CSS, and JavaScript.  All the apps use some combination of standard web APIs and APIs that we hope to standardize in some form.

Firefox OS homescreen screenshot Firefox OS clock app screenshot Firefox OS email app screenshot

Here are some screenshots.  We’ve got the default home screen app, the clock app, and of course, the email app.

It’s an entirely client-side offline email application, supporting IMAP4, POP3, and ActiveSync.  The goal, like all Firefox OS apps shipped with the phone, is to give native apps on other platforms a run for their money.

And that begins with starting up fast.

Fast Startup: The Problems

But that’s frequently easier said than done.  Slow-loading websites are still very much a thing.

The good news for the email application is that a slow network isn’t one of its problems.  It’s pre-loaded on the phone.  And even if it wasn’t, because of the security implications of the TCP Web API and the difficulty of explaining this risk to users in a way they won’t just click through, any TCP-using app needs to be a cryptographically signed zip file approved by a marketplace.  So we do load directly from flash.

However, it’s not like flash on cellphones is equivalent to an infinitely fast, zero-latency network connection.  And even if it was, in a naive app you’d still try and load all of your HTML, CSS, and JavaScript at the same time because the HTML file would reference them all.  And that adds up.

It adds up in the form of event loop activity and competition with other threads and processes.  With the exception of Promises which get their own micro-task queue fast-lane, the web execution model is the same as all other UI event loops; events get scheduled and then executed in the same order they are scheduled.  Loading data from an asynchronous API like IndexedDB means that your read result gets in line behind everything else that’s scheduled.  And in the case of the bulk of shipped Firefox OS devices, we only have a single processor core so the thread and process contention do come into play.

So we try not to be a naive.

Seeming Fast at Startup: The HTML Cache

If we’re going to optimize startup, it’s good to start with what the user sees.  Once an account exists for the email app, at startup we display the default account’s inbox folder.

What is the least amount of work that we can do to show that?  Cache a screenshot of the Inbox.  The problem with that, of course, is that a static screenshot is indistinguishable from an unresponsive application.

So we did the next best thing, (which is) we cache the actual HTML we display.  At startup we load a minimal HTML file, our concatenated CSS, and just enough Javascript to figure out if we should use the HTML cache and then actually use it if appropriate.  It’s not always appropriate, like if our application is being triggered to display a compose UI or from a new mail notification that wants to show a specific message or a different folder.  But this is a decision we can make synchronously so it doesn’t slow us down.

Local Storage: Okay in small doses

We implement this by storing the HTML in localStorage.

Important Disclaimer!  LocalStorage is a bad API.  It’s a bad API because it’s synchronous.  You can read any value stored in it at any time, without waiting for a callback.  Which means if the data is not in memory the browser needs to block its event loop or spin a nested event loop until the data has been read from disk.  Browsers avoid this now by trying to preload the Entire contents of local storage for your origin into memory as soon as they know your page is being loaded.  And then they keep that information, ALL of it, in memory until your page is gone.

So if you store a megabyte of data in local storage, that’s a megabyte of data that needs to be loaded in its entirety before you can use any of it, and that hangs around in scarce phone memory.

To really make the point: do not use local storage, at least not directly.  Use a library like localForage that will use IndexedDB when available, and then fails over to WebSQLDatabase and local storage in that order.

Now, having sufficiently warned you of the terrible evils of local storage, I can say with a sorta-clear conscience… there are upsides in this very specific case.

The synchronous nature of the API means that once we get our turn in the event loop we can act immediately.  There’s no waiting around for an IndexedDB read result to gets its turn on the event loop.

This matters because although the concept of loading is simple from a User Experience perspective, there’s no standard to back it up right now.  Firefox OS’s UX desires are very straightforward.  When you tap on an app, we zoom it in.  Until the app is loaded we display the app’s icon in the center of the screen.  Unfortunately the standards are still assuming that the content is right there in the HTML.  This works well for document-based web pages or server-powered web apps where the contents of the page are baked in.  They work less well for client-only web apps where the content lives in a database and has to be dynamically retrieved.

The two events that exist are:

DOMContentLoaded” fires when the document has been fully parsed and all scripts not tagged as “async” have run.  If there were stylesheets referenced prior to the script tags, the script tags will wait for the stylesheet loads.

load” fires when the document has been fully loaded; stylesheets, images, everything.

But none of these have anything to do with the content in the page saying it’s actually done.  This matters because these standards also say nothing about IndexedDB reads or the like.  We tried to create a standards consensus around this, but it’s not there yet.  So Firefox OS just uses the “load” event to decide an app or page has finished loading and it can stop showing your app icon.  This largely avoids the dreaded “flash of unstyled content” problem, but it also means that your webpage or app needs to deal with this period of time by displaying a loading UI or just accepting a potentially awkward transient UI state.

(Trivial HTML slide)

<link rel=”stylesheet” ...> <script ...></script> DOMContentLoaded!

This is the important summary of our index.html.

We reference our stylesheet first.  It includes all of our styles.  We never dynamically load stylesheets because that compels a style recalculation for all nodes and potentially a reflow.  We would have to have an awful lot of style declarations before considering that.

Then we have our single script file.  Because the stylesheet precedes the script, our script will not execute until the stylesheet has been loaded.  Then our script runs and we synchronously insert our HTML from local storage.  Then DOMContentLoaded can fire.  At this point the layout engine has enough information to perform a style recalculation and determine what CSS-referenced image resources need to be loaded for buttons and icons, then those load, and then we’re good to be displayed as the “load” event can fire.

After that, we’re displaying an interactive-ish HTML document.  You can scroll, you can press on buttons and the :active state will apply.  So things seem real.

Being Fast: Lazy Loading and Optimized Layers

But now we need to try and get some logic in place as quickly as possible that will actually cash the checks that real-looking HTML UI is writing.  And the key to that is only loading what you need when you need it, and trying to get it to load as quickly as possible.

There are many module loading and build optimizing tools out there, and most frameworks have a preferred or required way of handling this.  We used the RequireJS family of Asynchronous Module Definition loaders, specifically the alameda loader and the r-dot-js optimizer.

One of the niceties of the loader plugin model is that we are able to express resource dependencies as well as code dependencies.

RequireJS Loader Plugins

var fooModule = require('./foo'); var htmlString = require('text!./foo.html'); var localizedDomNode = require('tmpl!./foo.html');

The standard Common JS loader semantics used by node.js and io.js are the first one you see here.  Load the module, return its exports.

But RequireJS loader plugins also allow us to do things like the second line where the exclamation point indicates that the load should occur using a loader plugin, which is itself a module that conforms to the loader plugin contract.  In this case it’s saying load the file foo.html as raw text and return it as a string.

But, wait, there’s more!  loader plugins can do more than that.  The third example uses a loader that loads the HTML file using the ‘text’ plugin under the hood, creates an HTML document fragment, and pre-localizes it using our localization library.  And this works un-optimized in a browser, no compilation step needed, but it can also be optimized.

So when our optimizer runs, it bundles up the core modules we use, plus, the modules for our “message list” card that displays the inbox.  And the message list card loads its HTML snippets using the template loader plugin.  The r-dot-js optimizer then locates these dependencies and the loader plugins also have optimizer logic that results in the HTML strings being inlined in the resulting optimized file.  So there’s just one single javascript file to load with no extra HTML file dependencies or other loads.

We then also run the optimizer against our other important cards like the “compose” card and the “message reader” card.  We don’t do this for all cards because it can be hard to carve up the module dependency graph for optimization without starting to run into cases of overlap where many optimized files redundantly include files loaded by other optimized files.

Plus, we have another trick up our sleeve:

Seeming Fast: Preloading

Preloading.  Our cards optionally know the other cards they can load.  So once we display a card, we can kick off a preload of the cards that might potentially be displayed.  For example, the message list card can trigger the compose card and the message reader card, so we can trigger a preload of both of those.

But we don’t go overboard with preloading in the frontend because we still haven’t actually loaded the back-end that actually does all the emaily email stuff.  The back-end is also chopped up into optimized layers along account type lines and online/offline needs, but the main optimized JS file still weighs in at something like 17 thousand lines of code with newlines retained.

So once our UI logic is loaded, it’s time to kick-off loading the back-end.  And in order to avoid impacting the responsiveness of the UI both while it loads and when we’re doing steady-state processing, we run it in a DOM Worker.

Being Responsive: Workers and SharedWorkers

DOM Workers are background JS threads that lack access to the page’s DOM, communicating with their owning page via message passing with postMessage.  Normal workers are owned by a single page.  SharedWorkers can be accessed via multiple pages from the same document origin.

By doing this, we stay out of the way of the main thread.  This is getting less important as browser engines support Asynchronous Panning & Zooming or “APZ” with hardware-accelerated composition, tile-based rendering, and all that good stuff.  (Some might even call it magic.)

When Firefox OS started, we didn’t have APZ, so any main-thread logic had the serious potential to result in janky scrolling and the impossibility of rendering at 60 frames per second.  It’s a lot easier to get 60 frames-per-second now, but even asynchronous pan and zoom potentially has to wait on dispatching an event to the main thread to figure out if the user’s tap is going to be consumed by app logic and preventDefault called on it.  APZ does this because it needs to know whether it should start scrolling or not.

And speaking of 60 frames-per-second…

Being Fast: Virtual List Widgets

…the heart of a mail application is the message list.  The expected UX is to be able to fling your way through the entire list of what the email app knows about and see the messages there, just like you would on a native app.

This is admittedly one of the areas where native apps have it easier.  There are usually list widgets that explicitly have a contract that says they request data on an as-needed basis.  They potentially even include data bindings so you can just point them at a data-store.

But HTML doesn’t yet have a concept of instantiate-on-demand for the DOM, although it’s being discussed by Firefox layout engine developers.  For app purposes, the DOM is a scene graph.  An extremely capable scene graph that can handle huge documents, but there are footguns and it’s arguably better to err on the side of fewer DOM nodes.

So what the email app does is we create a scroll-region div and explicitly size it based on the number of messages in the mail folder we’re displaying.  We create and render enough message summary nodes to cover the current screen, 3 screens worth of messages in the direction we’re scrolling, and then we also retain up to 3 screens worth in the direction we scrolled from.  We also pre-fetch 2 more screens worth of messages from the database.  These constants were arrived at experimentally on prototype devices.

We listen to “scroll” events and issue database requests and move DOM nodes around and update them as the user scrolls.  For any potentially jarring or expensive transitions such as coordinate space changes from new messages being added above the current scroll position, we wait for scrolling to stop.

Nodes are absolutely positioned within the scroll area using their ‘top’ style but translation transforms also work.  We remove nodes from the DOM, then update their position and their state before re-appending them.  We do this because the browser APZ logic tries to be clever and figure out how to create an efficient series of layers so that it can pre-paint as much of the DOM as possible in graphic buffers, AKA layers, that can be efficiently composited by the GPU.  Its goal is that when the user is scrolling, or something is being animated, that it can just move the layers around the screen or adjust their opacity or other transforms without having to ask the layout engine to re-render portions of the DOM.

When our message elements are added to the DOM with an already-initialized absolute position, the APZ logic lumps them together as something it can paint in a single layer along with the other elements in the scrolling region.  But if we start moving them around while they’re still in the DOM, the layerization logic decides that they might want to independently move around more in the future and so each message item ends up in its own layer.  This slows things down.  But by removing them and re-adding them it sees them as new with static positions and decides that it can lump them all together in a single layer.  Really, we could just create new DOM nodes, but we produce slightly less garbage this way and in the event there’s a bug, it’s nicer to mess up with 30 DOM nodes displayed incorrectly rather than 3 million.

But as neat as the layerization stuff is to know about on its own, I really mention it to underscore 2 suggestions:

1, Use a library when possible.  Getting on and staying on APZ fast-paths is not trivial, especially across browser engines.  So it’s a very good idea to use a library rather than rolling your own.

2, Use developer tools.  APZ is tricky to reason about and even the developers who write the Async pan & zoom logic can be surprised by what happens in complex real-world situations.  And there ARE developer tools available that help you avoid needing to reason about this.  Firefox OS has easy on-device developer tools that can help diagnose what’s going on or at least help tell you whether you’re making things faster or slower:

– it’s got a frames-per-second overlay; you do need to scroll like mad to get the system to want to render 60 frames-per-second, but it makes it clear what the net result is

– it has paint flashing that overlays random colors every time it paints the DOM into a layer.  If the screen is flashing like a discotheque or has a lot of smeared rainbows, you know something’s wrong because the APZ logic is not able to to just reuse its layers.

– devtools can enable drawing cool colored borders around the layers APZ has created so you can see if layerization is doing something crazy

There’s also fancier and more complicated tools in Firefox and other browsers like Google Chrome to let you see what got painted, what the layer tree looks like, et cetera.

And that’s my spiel.

Links

The source code to Gaia can be found at https://github.com/mozilla-b2g/gaia

The email app in particular can be found at https://github.com/mozilla-b2g/gaia/tree/master/apps/email

(I also asked for questions here.)

Categorieën: Mozilla-nl planet

Joshua Cranmer: Breaking news

Thunderbird - wo, 01/04/2015 - 09:00
It was brought to my attention recently by reputable sources that the recent announcement of increased usage in recent years produced an internal firestorm within Mozilla. Key figures raised alarm that some of the tech press had interpreted the blog post as a sign that Thunderbird was not, in fact, dead. As a result, they asked Thunderbird community members to make corrections to emphasize that Mozilla was trying to kill Thunderbird.

The primary fear, it seems, is that knowledge that the largest open-source email client was still receiving regular updates would impel its userbase to agitate for increased funding and maintenance of the client to help forestall potential threats to the open nature of email as well as to innovate in the space of providing usable and private communication channels. Such funding, however, would be an unaffordable luxury and would only distract Mozilla from its central goal of building developer productivity tooling. Persistent rumors that Mozilla would be willing to fund Thunderbird were it renamed Firefox Email were finally addressed with the comment, "such a renaming would violate our current policy that all projects be named Persona."

Categorieën: Mozilla-nl planet

Joshua Cranmer: Why email is hard, part 8: why email security failed

Thunderbird - ti, 13/01/2015 - 05:38
This post is part 8 of an intermittent series exploring the difficulties of writing an email client. Part 1 describes a brief history of the infrastructure. Part 2 discusses internationalization. Part 3 discusses MIME. Part 4 discusses email addresses. Part 5 discusses the more general problem of email headers. Part 6 discusses how email security works in practice. Part 7 discusses the problem of trust. This part discusses why email security has largely failed.

At the end of the last part in this series, I posed the question, "Which email security protocol is most popular?" The answer to the question is actually neither S/MIME nor PGP, but a third protocol, DKIM. I haven't brought up DKIM until now because DKIM doesn't try to secure email in the same vein as S/MIME or PGP, but I still consider it relevant to discussing email security.

Unquestionably, DKIM is the only security protocol for email that can be considered successful. There are perhaps 4 billion active email addresses [1]. Of these, about 1-2 billion use DKIM. In contrast, S/MIME can count a few million users, and PGP at best a few hundred thousand. No other security protocols have really caught on past these three. Why did DKIM succeed where the others fail?

DKIM's success stems from its relatively narrow focus. It is nothing more than a cryptographic signature of the message body and a smattering of headers, and is itself stuck in the DKIM-Signature header. It is meant to be applied to messages only on outgoing servers and read and processed at the recipient mail server—it completely bypasses clients. That it bypasses clients allows it to solve the problem of key discovery and key management very easily (public keys are stored in DNS, which is already a key part of mail delivery), and its role in spam filtering is strong motivation to get it implemented quickly (it is 7 years old as of this writing). It's also simple: this one paragraph description is basically all you need to know [2].

The failure of S/MIME and PGP to see large deployment is certainly a large topic of discussion on myriads of cryptography enthusiast mailing lists, which often like to partake in propositions of new end-to-end encryption of email paradigms, such as the recent DIME proposal. Quite frankly, all of these solutions suffer broadly from at least the same 5 fundamental weaknesses, and I see it unlikely that a protocol will come about that can fix these weaknesses well enough to become successful.

The first weakness, and one I've harped about many times already, is UI. Most email security UI is abysmal and generally at best usable only by enthusiasts. At least some of this is endemic to security: while it mean seem obvious how to convey what an email signature or an encrypted email signifies, how do you convey the distinctions between sign-and-encrypt, encrypt-and-sign, or an S/MIME triple wrap? The Web of Trust model used by PGP (and many other proposals) is even worse, in that inherently requires users to do other actions out-of-band of email to work properly.

Trust is the second weakness. Consider that, for all intents and purposes, the email address is the unique identifier on the Internet. By extension, that implies that a lot of services are ultimately predicated on the notion that the ability to receive and respond to an email is a sufficient means to identify an individual. However, the entire purpose of secure email, or at least of end-to-end encryption, is subtly based on the fact that other people in fact have access to your mailbox, thus destroying the most natural ways to build trust models on the Internet. The quest for anonymity or privacy also renders untenable many other plausible ways to establish trust (e.g., phone verification or government-issued ID cards).

Key discovery is another weakness, although it's arguably the easiest one to solve. If you try to keep discovery independent of trust, the problem of key discovery is merely picking a protocol to publish and another one to find keys. Some of these already exist: PGP key servers, for example, or using DANE to publish S/MIME or PGP keys.

Key management, on the other hand, is a more troubling weakness. S/MIME, for example, basically works without issue if you have a certificate, but managing to get an S/MIME certificate is a daunting task (necessitated, in part, by its trust model—see how these issues all intertwine?). This is also where it's easy to say that webmail is an unsolvable problem, but on further reflection, I'm not sure I agree with that statement anymore. One solution is just storing the private key with the webmail provider (you're trusting them as an email client, after all), but it's also not impossible to imagine using phones or flash drives as keystores. Other key management factors are more difficult to solve: people who lose their private keys or key rollover create thorny issues. There is also the difficulty of managing user expectations: if I forget my password to most sites (even my email provider), I can usually get it reset somehow, but when a private key is lost, the user is totally and completely out of luck.

Of course, there is one glaring and almost completely insurmountable problem. Encrypted email fundamentally precludes certain features that we have come to take for granted. The lesser known is server-side search and filtration. While there exist some mechanisms to do search on encrypted text, those mechanisms rely on the fact that you can manipulate the text to change the message, destroying the integrity feature of secure email. They also tend to be fairly expensive. It's easy to just say "who needs server-side stuff?", but the contingent of people who do email on smartphones would not be happy to have to pay the transfer rates to download all the messages in their folder just to find one little email, nor the energy costs of doing it on the phone. And those who have really large folders—Fastmail has a design point of 1,000,000 in a single folder—would still prefer to not have to transfer all their mail even on desktops.

The more well-known feature that would disappear is spam filtration. Consider that 90% of all email is spam, and if you think your spam folder is too slim for that to be true, it's because your spam folder only contains messages that your email provider wasn't sure were spam. The loss of server-side spam filtering would dramatically increase the cost of spam (a 10% reduction in efficiency would double the amount of server storage, per my calculations), and client-side spam filtering is quite literally too slow [3] and too costly (remember smartphones? Imagine having your email take 10 times as much energy and bandwidth) to be a tenable option. And privacy or anonymity tends to be an invitation to abuse (cf. Tor and Wikipedia). Proposed solutions to the spam problem are so common that there is a checklist containing most of the objections.

When you consider all of those weaknesses, it is easy to be pessimistic about the possibility of wide deployment of powerful email security solutions. The strongest future—all email is encrypted, including metadata—is probably impossible or at least woefully impractical. That said, if you weaken some of the assumptions (say, don't desire all or most traffic to be encrypted), then solutions seem possible if difficult.

This concludes my discussion of email security, at least until things change for the better. I don't have a topic for the next part in this series picked out (this part actually concludes the set I knew I wanted to discuss when I started), although OAuth and DMARC are two topics that have been bugging me enough recently to consider writing about. They also have the unfortunate side effect of being things likely to see changes in the near future, unlike most of the topics I've discussed so far. But rest assured that I will find more difficulties in the email infrastructure to write about before long!

[1] All of these numbers are crude estimates and are accurate to only an order of magnitude. To justify my choices: I assume 1 email address per Internet user (this overestimates the developing world and underestimates the developed world). The largest webmail providers have given numbers that claim to be 1 billion active accounts between them, and all of them use DKIM. S/MIME is guessed by assuming that any smartcard deployment supports S/MIME, and noting that the US Department of Defense and Estonia's digital ID project are both heavy users of such smartcards. PGP is estimated from the size of the strong set and old numbers on the reachable set from the core Web of Trust.
[2] Ever since last April, it's become impossible to mention DKIM without referring to DMARC, as a result of Yahoo's controversial DMARC policy. A proper discussion of DMARC (and why what Yahoo did was controversial) requires explaining the mail transmission architecture and spam, however, so I'll defer that to a later post. It's also possible that changes in this space could happen within the next year.
[3] According to a former GMail spam employee, if it takes you as long as three minutes to calculate reputation, the spammer wins.

Categorieën: Mozilla-nl planet

Joshua Cranmer: A unified history for comm-central

Thunderbird - sn, 10/01/2015 - 18:55
Several years back, Ehsan and Jeff Muizelaar attempted to build a unified history of mozilla-central across the Mercurial era and the CVS era. Their result is now used in the gecko-dev repository. While being distracted on yet another side project, I thought that I might want to do the same for comm-central. It turns out that building a unified history for comm-central makes mozilla-central look easy: mozilla-central merely had one import from CVS. In contrast, comm-central imported twice from CVS (the calendar code came later), four times from mozilla-central (once with converted history), and imported twice from Instantbird's repository (once with converted history). Three of those conversions also involved moving paths. But I've worked through all of those issues to provide a nice snapshot of the repository [1]. And since I've been frustrated by failing to find good documentation on how this sort of process went for mozilla-central, I'll provide details on the process for comm-central.

The first step and probably the hardest is getting the CVS history in DVCS form (I use hg because I'm more comfortable it, but there's effectively no difference between hg, git, or bzr here). There is a git version of mozilla's CVS tree available, but I've noticed after doing research that its last revision is about a month before the revision I need for Calendar's import. The documentation for how that repo was built is no longer on the web, although we eventually found a copy after I wrote this post on git.mozilla.org. I tried doing another conversion using hg convert to get CVS tags, but that rudely blew up in my face. For now, I've filed a bug on getting an official, branchy-and-tag-filled version of this repository, while using the current lack of history as a base. Calendar people will have to suffer missing a month of history.

CVS is famously hard to convert to more modern repositories, and, as I've done my research, Mozilla's CVS looks like it uses those features which make it difficult. In particular, both the calendar CVS import and the comm-central initial CVS import used a CVS tag HG_COMM_INITIAL_IMPORT. That tagging was done, on only a small portion of the tree, twice, about two months apart. Fortunately, mailnews code was never touched on CVS trunk after the import (there appears to be one commit on calendar after the tagging), so it is probably possible to salvage a repository-wide consistent tag.

The start of my script for conversion looks like this:

#!/bin/bash set -e WORKDIR=/tmp HGCVS=$WORKDIR/mozilla-cvs-history MC=/src/trunk/mozilla-central CC=/src/trunk/comm-central OUTPUT=$WORKDIR/full-c-c # Bug 445146: m-c/editor/ui -> c-c/editor/ui MC_EDITOR_IMPORT=d8064eff0a17372c50014ee305271af8e577a204 # Bug 669040: m-c/db/mork -> c-c/db/mork MC_MORK_IMPORT=f2a50910befcf29eaa1a29dc088a8a33e64a609a # Bug 1027241, bug 611752 m-c/security/manager/ssl/** -> c-c/mailnews/mime/src/* MC_SMIME_IMPORT=e74c19c18f01a5340e00ecfbc44c774c9a71d11d # Step 0: Grab the mozilla CVS history. if [ ! -e $HGCVS ]; then hg clone git+https://github.com/jrmuizel/mozilla-cvs-history.git $HGCVS fi

Since I don't want to include the changesets useless to comm-central history, I trimmed the history by using hg convert to eliminate changesets that don't change the necessary files. Most of the files are simple directory-wide changes, but S/MIME only moved a few files over, so it requires a more complex way to grab the file list. In addition, I also replaced the % in the usernames with @ that they are used to appearing in hg. The relevant code is here:

# Step 1: Trim mozilla CVS history to include only the files we are ultimately # interested in. cat >$WORKDIR/convert-filemap.txt <<EOF # Revision e4f4569d451a include directory/xpcom include mail include mailnews include other-licenses/branding/thunderbird include suite # Revision 7c0bfdcda673 include calendar include other-licenses/branding/sunbird # Revision ee719a0502491fc663bda942dcfc52c0825938d3 include editor/ui # Revision 52efa9789800829c6f0ee6a005f83ed45a250396 include db/mork/ include db/mdb/ EOF # Add the S/MIME import files hg -R $MC log -r "children($MC_SMIME_IMPORT)" \ --template "{file_dels % 'include {file}\n'}" >>$WORKDIR/convert-filemap.txt if [ ! -e $WORKDIR/convert-authormap.txt ]; then hg -R $HGCVS log --template "{email(author)}={sub('%', '@', email(author))}\n" \ | sort -u > $WORKDIR/convert-authormap.txt fi cd $WORKDIR hg convert $HGCVS $OUTPUT --filemap convert-filemap.txt -A convert-authormap.txt

That last command provides us the subset of the CVS history that we need for unified history. Strictly speaking, I should be pulling a specific revision, but I happen to know that there's no need to (we're cloning the only head) in this case. At this point, we now need to pull in the mozilla-central changes before we pull in comm-central. Order is key; hg convert will only apply the graft points when converting the child changeset (which it does but once), and it needs the parents to exist before it can do that. We also need to ensure that the mozilla-central graft point is included before continuing, so we do that, and then pull mozilla-central:

CC_CVS_BASE=$(hg log -R $HGCVS -r 'tip' --template '{node}') CC_CVS_BASE=$(grep $CC_CVS_BASE $OUTPUT/.hg/shamap | cut -d' ' -f2) MC_CVS_BASE=$(hg log -R $HGCVS -r 'gitnode(215f52d06f4260fdcca797eebd78266524ea3d2c)' --template '{node}') MC_CVS_BASE=$(grep $MC_CVS_BASE $OUTPUT/.hg/shamap | cut -d' ' -f2) # Okay, now we need to build the map of revisions. cat >$WORKDIR/convert-revmap.txt <<EOF e4f4569d451a5e0d12a6aa33ebd916f979dd8faa $CC_CVS_BASE # Thunderbird / Suite 7c0bfdcda6731e77303f3c47b01736aaa93d5534 d4b728dc9da418f8d5601ed6735e9a00ac963c4e, $CC_CVS_BASE # Calendar 9b2a99adc05e53cd4010de512f50118594756650 $MC_CVS_BASE # Mozilla graft point ee719a0502491fc663bda942dcfc52c0825938d3 78b3d6c649f71eff41fe3f486c6cc4f4b899fd35, $MC_EDITOR_IMPORT # Editor 8cdfed92867f885fda98664395236b7829947a1d 4b5da7e5d0680c6617ec743109e6efc88ca413da, e4e612fcae9d0e5181a5543ed17f705a83a3de71 # Chat EOF # Next, import mozilla-central revisions for rev in $MC_MORK_IMPORT $MC_EDITOR_IMPORT $MC_SMIME_IMPORT; do hg convert $MC $OUTPUT -r $rev --splicemap $WORKDIR/convert-revmap.txt \ --filemap $WORKDIR/convert-filemap.txt done

Some notes about all of the revision ids in the script. The splicemap requires the full 40-character SHA ids; anything less and the thing complains. I also need to specify the parents of the revisions that deleted the code for the mozilla-central import, so if you go hunting for those revisions and are surprised that they don't remove the code in question, that's why.

I mentioned complications about the merges earlier. The Mork and S/MIME import codes here moved files, so that what was db/mdb in mozilla-central became db/mork. There's no support for causing the generated splice to record these as a move, so I have to manually construct those renamings:

# We need to execute a few hg move commands due to renamings. pushd $OUTPUT hg update -r $(grep $MC_MORK_IMPORT .hg/shamap | cut -d' ' -f2) (hg -R $MC log -r "children($MC_MORK_IMPORT)" \ --template "{file_dels % 'hg mv {file} {sub(\"db/mdb\", \"db/mork\", file)}\n'}") | bash hg commit -m 'Pseudo-changeset to move Mork files' -d '2011-08-06 17:25:21 +0200' MC_MORK_IMPORT=$(hg log -r tip --template '{node}') hg update -r $(grep $MC_SMIME_IMPORT .hg/shamap | cut -d' ' -f2) (hg -R $MC log -r "children($MC_SMIME_IMPORT)" \ --template "{file_dels % 'hg mv {file} {sub(\"security/manager/ssl\", \"mailnews/mime\", file)}\n'}") | bash hg commit -m 'Pseudo-changeset to move S/MIME files' -d '2014-06-15 20:51:51 -0700' MC_SMIME_IMPORT=$(hg log -r tip --template '{node}') popd # Echo the new move commands to the changeset conversion map. cat >>$WORKDIR/convert-revmap.txt <<EOF 52efa9789800829c6f0ee6a005f83ed45a250396 abfd23d7c5042bc87502506c9f34c965fb9a09d1, $MC_MORK_IMPORT # Mork 50f5b5fc3f53c680dba4f237856e530e2097adfd 97253b3cca68f1c287eb5729647ba6f9a5dab08a, $MC_SMIME_IMPORT # S/MIME EOF

Now that we have all of the graft points defined, and all of the external code ready, we can pull comm-central and do the conversion. That's not quite it, though—when we graft the S/MIME history to the original mozilla-central history, we have a small segment of abandoned converted history. A call to hg strip removes that.

# Now, import comm-central revisions that we need hg convert $CC $OUTPUT --splicemap $WORKDIR/convert-revmap.txt hg strip 2f69e0a3a05a

[1] I left out one of the graft points because I just didn't want to deal with it. I'll leave it as an exercise to the reader to figure out which one it was. Hint: it's the only one I didn't know about before I searched for the archive points [2].
[2] Since I wasn't sure I knew all of the graft points, I decided to try to comb through all of the changesets to figure out who imported code. It turns out that hg log -r 'adds("**")' narrows it down nicely (1667 changesets to look at instead of 17547), and using the {file_adds} template helps winnow it down more easily.

Categorieën: Mozilla-nl planet

Philipp Kewisch: Monitor all http(s) network requests using the Mozilla Platform

Thunderbird - to, 02/10/2014 - 16:38

In an xpcshell test, I recently needed a way to monitor all network requests and access both request and response data so I can save them for later use. This required a little bit of digging in Mozilla’s devtools code so I thought I’d write a short blog post about it.

This code will be used in a testcase that ensures that calendar providers in Lightning function properly. In the case of the CalDAV provider, we would need to access a real server for testing. We can’t just set up a few servers and use them for testing, it would end in an unreasonable amount of server maintenance. Given non-local connections are not allowed when running the tests on the Mozilla build infrastructure, it wouldn’t work anyway. The solution is to create a fakeserver, that is able to replay the requests in the same way. Instead of manually making the requests and figuring out how the server replies, we can use this code to quickly collect all the requests we need.

Without further delay, here is the code you have been waiting for:


This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters

Show hidden characters





/* This Source Code Form is subject to the terms of the Mozilla Public * License, v. 2.0. If a copy of the MPL was not distributed with this * file, You can obtain one at http://mozilla.org/MPL/2.0/. */ var allRequests = []; /** * Add the following function as a request observer: * Services.obs.addObserver(httpObserver, "http-on-examine-response", false); * * When done listening on requests: * dump(allRequests.join("\n===\n")); // print them * dump(JSON.stringify(allRequests, null, " ")) // jsonify them */ function httpObserver(aSubject, aTopic, aData) { if (aSubject instanceof Components.interfaces.nsITraceableChannel) { let request = new TracedRequest(aSubject); request._next = aSubject.setNewListener(request); allRequests.push(request); } } /** * This is the object that represents a request/response and also collects the data for it * * @param aSubject The channel from the response observer. */ function TracedRequest(aSubject) { let httpchannel = aSubject.QueryInterface(Components.interfaces.nsIHttpChannel); let self = this; this.requestHeaders = Object.create(null); httpchannel.visitRequestHeaders({ visitHeader: function(k, v) { self.requestHeaders[k] = v; } }); this.responseHeaders = Object.create(null); httpchannel.visitResponseHeaders({ visitHeader: function(k, v) { self.responseHeaders[k] = v; } }); this.uri = aSubject.URI.spec; this.method = httpchannel.requestMethod; this.requestBody = readRequestBody(aSubject); this.responseStatus = httpchannel.responseStatus; this.responseStatusText = httpchannel.responseStatusText; this._chunks = []; } TracedRequest.prototype = { uri: null, method: null, requestBody: null, requestHeaders: null, responseStatus: null, responseStatusText: null, responseHeaders: null, responseBody: null, toJSON: function() { let j = Object.create(null); for (let m of Object.keys(this)) { if (typeof this[m] != "function" && m[0] != "_") { j[m] = this[m]; } } return j; }, onStartRequest: function(aRequest, aContext) this._next.onStartRequest(aRequest, aContext), onStopRequest: function(aRequest, aContext, aStatusCode) { this.responseBody = this._chunks.join(""); this._chunks = null; this._next.onStopRequest(aRequest, aContext, aStatusCode); this._next = null; }, onDataAvailable: function(aRequest, aContext, aStream, aOffset, aCount) { let binaryInputStream = Components.classes["@mozilla.org/binaryinputstream;1"] .createInstance(Components.interfaces.nsIBinaryInputStream); let storageStream = Components.classes["@mozilla.org/storagestream;1"] .createInstance(Components.interfaces.nsIStorageStream); let outStream = Components.classes["@mozilla.org/binaryoutputstream;1"] .createInstance(Components.interfaces.nsIBinaryOutputStream); binaryInputStream.setInputStream(aStream); storageStream.init(8192, aCount, null); outStream.setOutputStream(storageStream.getOutputStream(0)); let data = binaryInputStream.readBytes(aCount); this._chunks.push(data); outStream.writeBytes(data, aCount); this._next.onDataAvailable(aRequest, aContext, storageStream.newInputStream(0), aOffset, aCount); }, toString: function() { let str = this.method + " " + this.uri; for (let hdr of Object.keys(this.requestHeaders)) { str += hdr + ": " + this.requestHeaders[hdr] + "\n"; } if (this.requestBody) { str += "\r\n" + this.requestBody + "\n"; } str += "\n" + this.responseStatus + " " + this.responseStatusText if (this.responseBody) { str += "\r\n" + this.responseBody + "\n"; } return str; } }; // Taken from: // http://hg.mozilla.org/mozilla-central/file/2399d1ae89e9/toolkit/devtools/webconsole/network-helper.js#l120 function readRequestBody(aRequest, aCharset="UTF-8") { let text = null; if (aRequest instanceof Ci.nsIUploadChannel) { let iStream = aRequest.uploadStream; let isSeekableStream = false; if (iStream instanceof Ci.nsISeekableStream) { isSeekableStream = true; } let prevOffset; if (isSeekableStream) { prevOffset = iStream.tell(); iStream.seek(Ci.nsISeekableStream.NS_SEEK_SET, 0); } // Read data from the stream. try { let rawtext = NetUtil.readInputStreamToString(iStream, iStream.available()) let conv = Components.classes["@mozilla.org/intl/scriptableunicodeconverter"] .createInstance(Components.interfaces.nsIScriptableUnicodeConverter); conv.charset = aCharset; text = conv.ConvertToUnicode(rawtext); } catch (err) { } // Seek locks the file, so seek to the beginning only if necko hasn't // read it yet, since necko doesn't eek to 0 before reading (at lest // not till 459384 is fixed). if (isSeekableStream && prevOffset == 0) { iStream.seek(Components.interfaces.nsISeekableStream.NS_SEEK_SET, 0); } } return text; }

view raw

TracedRequest.js

hosted with ❤ by GitHub

Categorieën: Mozilla-nl planet

Ludovic Hirlimann: Tips on organizing a pgp key signing party

Thunderbird - mo, 29/09/2014 - 13:03

Over the years I’ve organized or tried to organize pgp key signing parties every time I go somewhere. I the last year I’ve organized 3 that were successful (eg with more then 10 attendees).

1. Have a venue

I’ve tried a bunch of times to have people show up at the hotel I was staying in the morning - that doesn’t work. Having catering at the venues is even better, it will encourage people to come from far away (or long distance commute). Try to show the path in the venues with signs (paper with PGP key signing party and arrows help).

2. Date and time

Meeting in the evening after work works better ( after 18 or 18:30 works better).

Let people know how long it will take (count 1 hour/per 30 participants).

3. Make people sign up

That makes people think twice before saying they will attend. It’s also an easy way for you to know how much beer/cola/ etc.. you’ll need to provide if you cater food.

I’ve been using eventbrite to manage attendance at my last three meeting it let’s me :

  • know who is coming
  • Mass mail participants
  • have them have a calendar reminder
4 Reach out

For such a party you need people to attend so you need to reach out.

I always start by a search on biglumber.com to find who are the people using gpg registered on that site for the area I’m visiting (see below on what I send).

Then I look for local linux users groups / *BSD groups  and send an announcement to them with :

  • date
  • venue
  • link to eventbrite and why I use it
  • ask them to forward (they know the area better than you)
  • I also use lanyrd and twitter but I’m not convinced that it works.

for my last announcement it looked like this :

Subject: GnuPG / PGP key signing party September 26 2014 Content-Type: multipart/signed; micalg=pgp-sha256; protocol="application/pgp-signature"; boundary="t01Mpe56TgLc7mgHKVMajjwkqQdw8XvI4" This is an OpenPGP/MIME signed message (RFC 4880 and 3156) --t01Mpe56TgLc7mgHKVMajjwkqQdw8XvI4 Content-Type: text/plain; charset=utf-8 Content-Transfer-Encoding: quoted-printable Hello my name is ludovic, I'm a sysadmins at mozilla working remote from europe. I've been involved with Thunderbird a lot (and still am). I'm organizing a pgp Key signing party in the Mozilla san francisco office on September the 26th 2014 from 6PM to 8PM. For security and assurances reasons I need to count how many people will attend. I'v setup a eventbrite for that at https://www.eventbrite.com/e/gnupg-pgp-key-signing-party-making-the-web-o= f-trust-stronger-tickets-12867542165 (please take one ticket if you think about attending - If you change you mind cancel so more people can come). I will use the eventbrite tool to send reminders and I will try to make a list with keys and fingerprint before the event to make things more manageable (but I don't promise). for those using lanyrd you will be able to use http://lanyrd.com/ccckzw. Ludovic ps sent to buug.org,nblug.org end penlug.org - please feel free to post where appropriate ( the more the meerier, the stronger the web of trust).= ps2 I have contacted people listed on biglumber to have more gpg related people show up. --=20 [:Usul] MOC Team at Mozilla QA Lead fof Thunderbird http://sietch-tabr.tumblr.com/ - http://weusepgp.info/ 5. Make it easy to attend

As noted above making a list of participants to hand out helps a lot (I’ve used http://www.phildev.net/pius/ and my own stuff to make a list). It make it easier for you, for attendees. Tell people what they need to bring (IDs, pen, printed fingerprints if you don’t provide a list).

6. Send reminders

Send people reminder and let them know how many people intend to show up. It boosts audience.

Categorieën: Mozilla-nl planet

Ludovic Hirlimann: Gnupg / PGP key signing party in mozilla's San francisco space

Thunderbird - wo, 17/09/2014 - 02:35

I’m organizing a pgp Keysigning party in the Mozilla san francisco office on September the 26th 2014 from 6PM to 8PM.

For security and assurances reasons I need to count how many people will attend. I’ve setup a eventbrite for that at https://www.eventbrite.com/e/gnupg-pgp-key-signing-party-making-the-web-of-trust-stronger-tickets-12867542165 (please take one ticket if you think about attending - If you change you mind cancel so more people can come).

I will use the eventbrite tool to send reminders and I will try to make a list with keys and fingerprint before the event to make things more manageable (but I don’t promise).

For those using lanyrd you will be able to use http://lanyrd.com/ccckzw.(Please tweet the event to get more people in).

Categorieën: Mozilla-nl planet

Joshua Cranmer: Why email is hard, part 7: email security and trust

Thunderbird - wo, 06/08/2014 - 05:39
This post is part 7 of an intermittent series exploring the difficulties of writing an email client. Part 1 describes a brief history of the infrastructure. Part 2 discusses internationalization. Part 3 discusses MIME. Part 4 discusses email addresses. Part 5 discusses the more general problem of email headers. Part 6 discusses how email security works in practice. This part discusses the problem of trust.

At a technical level, S/MIME and PGP (or at least PGP/MIME) use cryptography essentially identically. Yet the two are treated as radically different models of email security because they diverge on the most important question of public key cryptography: how do you trust the identity of a public key? Trust is critical, as it is the only way to stop an active, man-in-the-middle (MITM) attack. MITM attacks are actually easier to pull off in email, since all email messages effectively have to pass through both the sender's and the recipients' email servers [1], allowing attackers to be able to pull off permanent, long-lasting MITM attacks [2].

S/MIME uses the same trust model that SSL uses, based on X.509 certificates and certificate authorities. X.509 certificates effectively work by providing a certificate that says who you are which is signed by another authority. In the original concept (as you might guess from the name "X.509"), the trusted authority was your telecom provider, and the certificates were furthermore intended to be a part of the global X.500 directory—a natural extension of the OSI internet model. The OSI model of the internet never gained traction, and the trusted telecom providers were replaced with trusted root CAs.

PGP, by contrast, uses a trust model that's generally known as the Web of Trust. Every user has a PGP key (containing their identity and their public key), and users can sign others' public keys. Trust generally flows from these signatures: if you trust a user, you know the keys that they sign are correct. The name "Web of Trust" comes from the vision that trust flows along the paths of signatures, building a tight web of trust.

And now for the controversial part of the post, the comparisons and critiques of these trust models. A disclaimer: I am not a security expert, although I am a programmer who revels in dreaming up arcane edge cases. I also don't use PGP at all, and use S/MIME to a very limited extent for some Mozilla work [3], although I did try a few abortive attempts to dogfood it in the past. I've attempted to replace personal experience with comprehensive research [4], but most existing critiques and comparisons of these two trust models are about 10-15 years old and predate several changes to CA certificate practices.

A basic tenet of development that I have found is that the average user is fairly ignorant. At the same time, a lot of the defense of trust models, both CAs and Web of Trust, tends to hinge on configurability. How many people, for example, know how to add or remove a CA root from Firefox, Windows, or Android? Even among the subgroup of Mozilla developers, I suspect the number of people who know how to do so are rather few. Or in the case of PGP, how many people know how to change the maximum path length? Or even understand the security implications of doing so?

Seen in the light of ignorant users, the Web of Trust is a UX disaster. Its entire security model is predicated on having users precisely specify how much they trust other people to trust others (ultimate, full, marginal, none, unknown) and also on having them continually do out-of-band verification procedures and publicly reporting those steps. In 1998, a seminal paper on the usability of a GUI for PGP encryption came to the conclusion that the UI was effectively unusable for users, to the point that only a third of the users were able to send an encrypted email (and even then, only with significant help from the test administrators), and a quarter managed to publicly announce their private keys at some point, which is pretty much the worst thing you can do. They also noted that the complex trust UI was never used by participants, although the failure of many users to get that far makes generalization dangerous [5]. While newer versions of security UI have undoubtedly fixed many of the original issues found (in no small part due to the paper, one of the first to argue that usability is integral, not orthogonal, to security), I have yet to find an actual study on the usability of the trust model itself.

The Web of Trust has other faults. The notion of "marginal" trust it turns out is rather broken: if you marginally trust a user who has two keys who both signed another person's key, that's the same as fully trusting a user with one key who signed that key. There are several proposals for different trust formulas [6], but none of them have caught on in practice to my knowledge.

A hidden fault is associated with its manner of presentation: in sharp contrast to CAs, the Web of Trust appears to not delegate trust, but any practical widespread deployment needs to solve the problem of contacting people who have had no prior contact. Combined with the need to bootstrap new users, this implies that there needs to be some keys that have signed a lot of other keys that are essentially default-trusted—in other words, a CA, a fact sometimes lost on advocates of the Web of Trust.

That said, a valid point in favor of the Web of Trust is that it more easily allows people to distrust CAs if they wish to. While I'm skeptical of its utility to a broader audience, the ability to do so for is crucial for a not-insignificant portion of the population, and it's important enough to be explicitly called out.

X.509 certificates are most commonly discussed in the context of SSL/TLS connections, so I'll discuss them in that context as well, as the implications for S/MIME are mostly the same. Almost all criticism of this trust model essentially boils down to a single complaint: certificate authorities aren't trustworthy. A historical criticism is that the addition of CAs to the main root trust stores was ad-hoc. Since then, however, the main oligopoly of these root stores (Microsoft, Apple, Google, and Mozilla) have made their policies public and clear [7]. The introduction of the CA/Browser Forum in 2005, with a collection of major CAs and the major browsers as members, and several [8] helps in articulating common policies. These policies, simplified immensely, boil down to:

  1. You must verify information (depending on certificate type). This information must be relatively recent.
  2. You must not use weak algorithms in your certificates (e.g., no MD5).
  3. You must not make certificates that are valid for too long.
  4. You must maintain revocation checking services.
  5. You must have fairly stringent physical and digital security practices and intrusion detection mechanisms.
  6. You must be [externally] audited every year that you follow the above rules.
  7. If you screw up, we can kick you out.

I'm not going to claim that this is necessarily the best policy or even that any policy can feasibly stop intrusions from happening. But it's a policy, so CAs must abide by some set of rules.

Another CA criticism is the fear that they may be suborned by national government spy agencies. I find this claim underwhelming, considering that the number of certificates acquired by intrusions that were used in the wild is larger than the number of certificates acquired by national governments that were used in the wild: 1 and 0, respectively. Yet no one complains about the untrustworthiness of CAs due to their ability to be hacked by outsiders. Another attack is that CAs are controlled by profit-seeking corporations, which misses the point because the business of CAs is not selling certificates but selling their access to the root databases. As we will see shortly, jeopardizing that access is a great way for a CA to go out of business.

To understand issues involving CAs in greater detail, there are two CAs that are particularly useful to look at. The first is CACert. CACert is favored by many by its attempt to handle X.509 certificates in a Web of Trust model, so invariably every public discussion about CACert ends up devolving into an attack on other CAs for their perceived capture by national governments or corporate interests. Yet what many of the proponents for inclusion of CACert miss (or dismiss) is the fact that CACert actually failed the required audit, and it is unlikely to ever pass an audit. This shows a central failure of both CAs and Web of Trust: different people have different definitions of "trust," and in the case of CACert, some people are favoring a subjective definition (I trust their owners because they're not evil) when an objective definition fails (in this case, that the root signing key is securely kept).

The other CA of note here is DigiNotar. In July 2011, some hackers managed to acquire a few fraudulent certificates by hacking into DigiNotar's systems. By late August, people had become aware of these certificates being used in practice [9] to intercept communications, mostly in Iran. The use appears to have been caught after Chromium updates failed due to invalid certificate fingerprints. After it became clear that the fraudulent certificates were not limited to a single fake Google certificate, and that DigiNotar had failed to notify potentially affected companies of its breach, DigiNotar was swiftly removed from all of the trust databases. It ended up declaring bankruptcy within two weeks.

DigiNotar indicates several things. One, SSL MITM attacks are not theoretical (I have seen at least two or three security experts advising pre-DigiNotar that SSL MITM attacks are "theoretical" and therefore the wrong target for security mechanisms). Two, keeping the trust of browsers is necessary for commercial operation of CAs. Three, the notion that a CA is "too big to fail" is false: DigiNotar played an important role in the Dutch community as a major CA and the operator of Staat der Nederlanden. Yet when DigiNotar screwed up and lost its trust, it was swiftly kicked out despite this role. I suspect that even Verisign could be kicked out if it manages to screw up badly enough.

This isn't to say that the CA model isn't problematic. But the source of its problems is that delegating trust isn't a feasible model in the first place, a problem that it shares with the Web of Trust as well. Different notions of what "trust" actually means and the uncertainty that gets introduced as chains of trust get longer both make delegating trust weak to both social engineering and technical engineering attacks. There appears to be an increasing consensus that the best way forward is some variant of key pinning, much akin to how SSH works: once you know someone's public key, you complain if that public key appears to change, even if it appears to be "trusted." This does leave people open to attacks on first use, and the question of what to do when you need to legitimately re-key is not easy to solve.

In short, both CAs and the Web of Trust have issues. Whether or not you should prefer S/MIME or PGP ultimately comes down to the very conscious question of how you want to deal with trust—a question without a clear, obvious answer. If I appear to be painting CAs and S/MIME in a positive light and the Web of Trust and PGP in a negative one in this post, it is more because I am trying to focus on the positions less commonly taken to balance perspective on the internet. In my next post, I'll round out the discussion on email security by explaining why email security has seen poor uptake and answering the question as to which email security protocol is most popular. The answer may surprise you!

[1] Strictly speaking, you can bypass the sender's SMTP server. In practice, this is considered a hole in the SMTP system that email providers are trying to plug.
[2] I've had 13 different connections to the internet in the same time as I've had my main email address, not counting all the public wifis that I have used. Whereas an attacker would find it extraordinarily difficult to intercept all of my SSH sessions for a MITM attack, intercepting all of my email sessions is clearly far easier if the attacker were my email provider.
[3] Before you read too much into this personal choice of S/MIME over PGP, it's entirely motivated by a simple concern: S/MIME is built into Thunderbird; PGP is not. As someone who does a lot of Thunderbird development work that could easily break the Enigmail extension locally, needing to use an extension would be disruptive to workflow.
[4] This is not to say that I don't heavily research many of my other posts, but I did go so far for this one as to actually start going through a lot of published journals in an attempt to find information.
[5] It's questionable how well the usability of a trust model UI can be measured in a lab setting, since the observer effect is particularly strong for all metrics of trust.
[6] The web of trust makes a nice graph, and graphs invite lots of interesting mathematical metrics. I've always been partial to eigenvectors of the graph, myself.
[7] Mozilla's policy for addition to NSS is basically the standard policy adopted by all open-source Linux or BSD distributions, seeing as OpenSSL never attempted to produce a root database.
[8] It looks to me that it's the browsers who are more in charge in this forum than the CAs.
[9] To my knowledge, this is the first—and so far only—attempt to actively MITM an SSL connection.

Categorieën: Mozilla-nl planet

Ludovic Hirlimann: Thunderbird 31 coming soon to you and needs testing love

Thunderbird - fr, 11/07/2014 - 12:39

We just released the second beta of Thunderbird 31. Please help us improve Thunderbird quality by uncovering bugs now in Thunderbird 31 beta so that developers have time to fix them.

There are two ways you can help

- Use Thunderbird 31 beta in your daily activities. For problems that you find, file a bug report that blocks our tracking bug 1008543.

- Use Thunderbird 31 beta to do formal testing.  Use the moztrap testing system to tests : choose run test - find the Thunderbird product and choose 31 test run.

Visit https://etherpad.mozilla.org/tbird31testing for additional information, and to post your testing questions and results.

Thanks for contributing and helping!

Ludo for the QA team

Updated links

Categorieën: Mozilla-nl planet

Pages